AI Article Synopsis

  • Antimicrobial resistance (AMR) is a growing global issue, making traditional antibiotics less effective, which has led to the exploration of alternative treatments like photodynamic therapy (PDT) and photothermal therapy (PTT).
  • PDT uses photosensitizers to produce reactive oxygen species (ROS) that damage microbial cells, while PTT employs heat for cellular destruction; both methods gain increased efficacy through the use of nanomaterials.
  • Carbon dots (CDs) have gained attention in recent years due to their unique properties that allow them to serve as effective photosensitizers and improve the performance of other treatments, highlighting their potential in reinventing antimicrobial therapies.

Article Abstract

Antimicrobial resistance (AMR) presents an escalating global challenge as conventional antibiotic treatments become less effective. In response, photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising alternatives. While rooted in ancient practices, these methods have evolved with modern innovations, particularly through the integration of lasers, refining their efficacy. PDT harnesses photosensitizers to generate reactive oxygen species (ROS), which are detrimental to microbial cells, whereas PTT relies on heat to induce cellular damage. The key to their effectiveness lies in the utilization of photosensitizers, especially when integrated into nano- or micron-scale supports, which amplify ROS production and enhance antimicrobial activity. Over the last decade, carbon dots (CDs) have emerged as a highly promising nanomaterial, attracting increasing attention owing to their distinctive properties and versatile applications, including PDT and PTT. They can not only function as photosensitizers, but also synergistically combine with other photosensitizers to enhance overall efficacy. This review explores the recent advancements in CDs, underscoring their significance and potential in reshaping advanced antimicrobial therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314369PMC
http://dx.doi.org/10.3390/nano14151250DOI Listing

Publication Analysis

Top Keywords

carbon dots
8
dots photodynamic/photothermal
4
antimicrobial
4
photodynamic/photothermal antimicrobial
4
antimicrobial therapy
4
therapy antimicrobial
4
antimicrobial resistance
4
resistance amr
4
amr presents
4
presents escalating
4

Similar Publications

TiSquantum dots composite carbon nanotubes aerogel with electromagnetic interference shielding effect.

Nanotechnology

January 2025

Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.

Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.

View Article and Find Full Text PDF

In this study, a simple and efficient method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) has been developed through a one-step hydrothermal process using hedyotis diffusa willd. The morphology, chemical composition, and optical properties of the resulting N-CQDs were thoroughly characterized. The synthesized N-CQDs exhibited a spherical shape with an average particle size of 4.

View Article and Find Full Text PDF

Liquid bidentate ligand for full ligand coverage towards efficient near-infrared perovskite quantum dot LEDs.

Light Sci Appl

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China.

Perovskite quantum dots (PQDs) show promise in light-emitting diodes (LEDs). However, near-infrared (NIR) LEDs employing PQDs exhibit inferior external quantum efficiency related to the PQD emitting in the visible range. One fundamental issue arises from the PQDs dynamic surface: the ligand loss and ions migration to the interfacial sites serve as quenching centers, resulting in trap-assisted recombination and carrier loss.

View Article and Find Full Text PDF

Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone.

Int J Biol Macromol

January 2025

Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.

View Article and Find Full Text PDF

In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!