Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, fully aromatic polyether sulfones were developed, bearing blue, yellow, and orange-red π-conjugated semiconducting units. Carbazole-, anthracene-, and benzothiadiazole-based fluorophores are copolymerized with a diphenylsulfone moiety. A diphenylpyridine comonomer was additionally utilized, acting as both a solubilizing unit and a weak blue fluorescent group. Using this rationale, fluorescent polyarylethers with high molecular weights, up to 70 kDa, were developed, showing film formation ability and high thermal stability, while preserving excellent solubility in common organic, nonvolatile, and nonchlorinated solvents. Fine-tuning of the emission color was achieved through subtle changes of the comonomers' type and ratio. Single-chromophore-bearing copolymers emitted in the blue or the yellow region of the visible spectrum, while the dual-chromophore-bearing terpolymers emitted throughout the visible spectrum, resulting in white light emission. Solutions of 20 wt% in polar aprotic solvents at ambient conditions allowed the deposition of fluorescent copolyethers and printing from non-chlorinated solvents. All polyethers were evaluated for their structural and optoelectronic properties, and selected copolymers were successfully used in the emitting layer (EML) of organic light-emitting diode (OLED) devices, using either rigid or flexible substrates. Remarkable color stability was displayed in all cases for up to 15 V of bias voltage. The Commission Internationale de L'Eclairage (CIE) of the fabricated devices is located in the blue (0.16, 0.16), yellow (0.44, 0.50), or white region of the visible spectrum (0.33, 0.38) with minimal changes according to the ratio of the comonomers. The versatile methodology toward semiconducting polyethersulfones for polymer light-emitting diodes (PLEDs) developed herein led to the scaled-up production of luminescent polymers of up to 25 g of high-molecular-weight single batches, demonstrating the effectiveness of this approach as a straightforward tool to facilitate the synthesis of flexible and printable EMLs for large-area PLED coverage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313940 | PMC |
http://dx.doi.org/10.3390/nano14151246 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!