Diquafosol Improves Corneal Wound Healing by Inducing NGF Expression in an Experimental Dry Eye Model.

Cells

Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea.

Published: July 2024

Dry eye disease (DED) is caused by inflammation and damage to the corneal surface due to tear film instability and hyperosmolarity. Various eye drops are used to treat this condition. Each eye drop has different properties and mechanisms of action, so the appropriate drug should be used according to clinical phenotypes. This study aims to compare the therapeutic mechanisms of cyclosporine A (CsA) and diquafosol tetrasodium (DQS). An experimental in vivo/in vitro model of DED using hyperosmolarity showed decreased cell viability, inhibited wound healing, and corneal damage compared to controls. Treatment with cyclosporine or diquafosol restored cell viability and wound healing and reduced corneal damage by hyperosmolarity. The expression of the inflammation-related genes , , and was reduced by cyclosporine and diquafosol, and the expression of , , and was reduced by cyclosporine. Increased apoptosis in the DED model was confirmed by increased Bax and decreased Bcl-2 and Bcl-xl expression, but treatment with cyclosporine or diquafosol resulted in decreased apoptosis. Diquafosol increased NGF expression and translocation into the extracellular space. DED has different damage patterns depending on the progression of the lesion. Thus, depending on the type of lesion, eye drops should be selected according to the therapeutic target, focusing on repairing cellular damage when cellular repair is needed or reducing inflammation when inflammation is high and cellular damage is severe.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311477PMC
http://dx.doi.org/10.3390/cells13151251DOI Listing

Publication Analysis

Top Keywords

wound healing
12
cyclosporine diquafosol
12
ngf expression
8
dry eye
8
eye drops
8
cell viability
8
corneal damage
8
treatment cyclosporine
8
reduced cyclosporine
8
cellular damage
8

Similar Publications

Background: To investigate the effect of Midnight-noon Ebb-flow combined with five-element music therapy in the continuous nursing of patients with chronic wounds.

Methods: From March 2022 to November 2023, we recruited 50 eligible chronic wound patients and randomly divided them into two groups according to a random number table: the experimental group (n = 25) and the control group (n = 25). The control group was treated with conventional nursing measures.

View Article and Find Full Text PDF

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

Exploring the Research Focus of RNA-Binding Proteins in Trauma and Burns.

Anal Cell Pathol (Amst)

December 2024

Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China.

Trauma and burns are leading causes of death and significant global health concerns. RNA-binding proteins (RBPs) play a crucial role in post-transcriptional gene regulation, influencing various biological processes of cellular RNAs. This study aims to review the emerging trends and key areas of research on RBPs in the context of trauma and burns.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is one of the most common chronic endocrine diseases, characterized by hyperglycemia, due to abnormal nitric oxide synthesis. The trend of an increase in the number of patients with DM continues. The medical and economic burden of DM is not only associated with hyperglycemia management but also with the management of DM-related complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!