Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: In recent years, the integration of large language models (LLMs) into healthcare has emerged as a revolutionary approach to enhancing doctor-patient communication, particularly in the management of diseases such as prostate cancer.
Methods: Our paper evaluated the effectiveness of three prominent LLMs-ChatGPT (3.5), Gemini (Pro), and Co-Pilot (the free version)-against the official Romanian Patient's Guide on prostate cancer. Employing a randomized and blinded method, our study engaged eight medical professionals to assess the responses of these models based on accuracy, timeliness, comprehensiveness, and user-friendliness.
Results: The primary objective was to explore whether LLMs, when operating in Romanian, offer comparable or superior performance to the Patient's Guide, considering their potential to personalize communication and enhance the informational accessibility for patients. Results indicated that LLMs, particularly ChatGPT, generally provided more accurate and user-friendly information compared to the Guide.
Conclusions: The findings suggest a significant potential for LLMs to enhance healthcare communication by providing accurate and accessible information. However, variability in performance across different models underscores the need for tailored implementation strategies. We highlight the importance of integrating LLMs with a nuanced understanding of their capabilities and limitations to optimize their use in clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311818 | PMC |
http://dx.doi.org/10.3390/healthcare12151548 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!