A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PyCTRAMER: A Python package for charge transfer rate constant of condensed-phase systems from Marcus theory to Fermi's golden rule. | LitMetric

In this work, we introduce PyCTRAMER, a comprehensive Python package designed for calculating charge transfer (CT) rate constants in disordered condensed-phase systems at finite temperatures, such as organic photovoltaic (OPV) materials. PyCTRAMER is a restructured and enriched version of the CTRAMER (Charge-Transfer RAtes from Molecular dynamics, Electronic structure, and Rate theory) package [Tinnin et al. J. Chem. Phys. 154, 214108 (2021)], enabling the computation of the Marcus CT rate constant and the six levels of the linearized semiclassical approximations of Fermi's golden rule (FGR) rate constant. It supports various types of intramolecular and intermolecular CT transitions from the excitonic states to CT state. Integrating quantum chemistry calculations, all-atom molecular dynamics (MD) simulations, spin-boson model construction, and rate constant calculations, PyCTRAMER offers an automatic workflow for handling photoinduced CT processes in explicit solvent environments and interfacial CT in amorphous donor/acceptor blends. The package also provides versatile tools for individual workflow steps, including electronic state analysis, state-specific force field construction, MD simulations, and spin-boson model construction from energy trajectories. We demonstrate the software's capabilities through two examples, highlighting both intramolecular and intermolecular CT processes in prototypical OPV systems.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0224524DOI Listing

Publication Analysis

Top Keywords

rate constant
16
python package
8
charge transfer
8
transfer rate
8
condensed-phase systems
8
fermi's golden
8
golden rule
8
molecular dynamics
8
intramolecular intermolecular
8
simulations spin-boson
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!