Synaptic Response of Fluidic Nanopores: The Connection of Potentiation with Hysteresis.

Chemphyschem

School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia.

Published: December 2024

AI Article Synopsis

  • Iontronic fluidic ionic/electronic components are being explored for use in artificial brain-like computation systems, with nanopore ionic rectifiers acting as synapse-like elements.
  • A model has been proposed that captures key features like hysteresis, rectification, and response times through conductance modulation between two states.
  • The model successfully demonstrates the synaptic properties, including potentiation and depression, by replicating behaviors observed in experimental setups involving polymer membranes and nanoporous anodic alumina membranes.

Article Abstract

Iontronic fluidic ionic/electronic components are emerging as promising elements for artificial brain-like computation systems. Nanopore ionic rectifiers can be operated as a synapse element, exhibiting conductance modulation in response to a train of voltage impulses, thus producing programmable resistive states. We propose a model that replicates hysteresis, rectification, and time domain response properties, based on conductance modulation between two conducting modes and a relaxation time of the state variable. We show that the kinetic effects observed in hysteresis loops govern the potentiation phenomena related to conductivity modulation. To illustrate the efficacy of the model, we apply it to replicate rectification, hysteresis and conductance modulation of two different experimental systems: a polymer membrane with conical pores, and a blind-hole nanoporous anodic alumina membrane with a barrier oxide layer. We show that the time transient analysis of the model develops the observed potentiation and depression phenomena of the synaptic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614370PMC
http://dx.doi.org/10.1002/cphc.202400265DOI Listing

Publication Analysis

Top Keywords

conductance modulation
12
synaptic response
4
response fluidic
4
fluidic nanopores
4
nanopores connection
4
connection potentiation
4
hysteresis
4
potentiation hysteresis
4
hysteresis iontronic
4
iontronic fluidic
4

Similar Publications

The role of macroautophagy in substance use disorders.

Ann N Y Acad Sci

December 2024

Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China.

Macroautophagy, a universal cellular process, sends cellular material to lysosomes for breakdown and is often activated by stressors like hypoxia or drug exposure. It is vital for protein balance, neurotransmitter release, synaptic function, and neuron survival. The role of macroautophagy in substance use disorders is dual.

View Article and Find Full Text PDF

The Hedgehog (Hh) signaling pathway is essential for maintaining homeostasis during embryogenesis and in adult tissues. In the liver, dysregulation of this pathway often leads to liver cancer development. Recent studies also suggest that disturbances in the Hh pathway can affect liver metabolism in healthy livers through interactions with other signaling pathways, such as the Wnt/β-catenin pathway.

View Article and Find Full Text PDF

Kinetic factors frequently emerge as the primary constraints in photocatalysis, exerting a critical influence on the efficacy of polymeric photocatalysts. The diverse conjugation systems within covalent organic frameworks (COFs) can significantly impact photon absorption, energy level structures, charge separation and migration kinetics. Consequently, these limitations often manifest as unsatisfactory kinetic behavior, which adversely affects the photocatalytic activity of COFs.

View Article and Find Full Text PDF

Ferroelastic phase transition-modulated electronic transport and photoelectric properties in monolayer 1T' ZrCl.

Phys Chem Chem Phys

December 2024

School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.

Monolayer 1T' ZrCl exhibits unique ferroelastic behavior with three structurally distinct variants (O1, O2, and O3), demonstrating potential for next-generation nanoelectronic and optoelectronic devices. This study investigates the electronic transport and optoelectronic properties of the O1 and O3 variants, with O3 serving as a representative for both O2 and O3 due to their structural symmetry. First-principles calculations and non-equilibrium Green's function analysis reveal that the O1 variant possesses exceptional electronic properties, including high electron mobility (1.

View Article and Find Full Text PDF

The heterojunction photocatalysts composed of organic dyes and polymeric carbon nitride (PCN) have great potential for photocatalytic hydrogen evolution (PHE). However, serious charge recombination exists at the dye/PCN interface for the large gaps in time scales and the poor driving force of charge transfer process. Herein, both the excited triplet states of organic dyes with long lifetimes and strong internal electric fields (IEF) as charge transfer driving forces are achieved by the construction of high dipole moments with aromatic-core engineering, and modulation of dye aggregates by alkyl modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!