Dual-mode readout platforms with colorimetric and electrochemiluminescence (ECL) signal enhancement are proposed for the ultrasensitive and flexible detection of the monkeypox virus (MPXV) in different scenes. A new nanotag, Ru@U6-Ru/Pt NPs is constructed for dual-mode platforms by integrating double-layered ECL luminophores and the nanozyme using Zr-MOF (UiO-66-NH) as the carrier, which not only generates enhanced ECL and colorimetric signals but also provide greater stability than that of commonly used nanotags. Dual-mode platforms are used within 15 min from the "sample in" to the "result out" steps, without nucleic acid amplification. The colorimetric mode allows the screening of MPXV with the visual limit of detection (vLOD) of 0.1 pM (6 × 10 copies µL) and the ECL mode supports quantitative detection of MPXV with an LOD as low as 10 aM (6 copies·µL), resulting in a broad sensing range of 60 to 3 × 10 copies·µL (10 orders of magnitude). Validation is conducted using 50 clinical samples, which is 100% concordant to those of quantitative polymerase chain reaction (qPCR), indicating that Ru@U6-Ru/Pt NPs-based dual-mode sensing platforms showed great promise as rapid, sensitive, and accurate tools for diagnosis of the nucleic acid of MPXV and other infectious pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481339 | PMC |
http://dx.doi.org/10.1002/advs.202405848 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!