AI Article Synopsis

  • Behavioral variant frontotemporal dementia (bvFTD) is primarily linked to tau or TDP-43 protein accumulation, and the study aimed to investigate how these proteinopathies cause different patterns of neurodegeneration in the brain's cortical layers.
  • Researchers compared the distribution of pyramidal neuron degeneration in individuals with bvFTD-tau (27 subjects), bvFTD-TDP (47 subjects), and healthy controls (32 subjects) across various cytoarchitectonic types in the frontal cortex.
  • Findings indicated that while SMI32 immunoreactivity (a measure of neuron health) decreased uniformly in bvFTD-TDP, there was a significant progressive loss in bvFTD-tau, especially in the supragranular

Article Abstract

Behavioural variant frontotemporal dementia (bvFTD) is a clinical syndrome caused primarily by either tau (bvFTD-tau) or transactive response DNA-binding protein of 43 kDa (TDP-43) (bvFTD-TDP) proteinopathies. We previously found that lower cortical layers and dorsolateral regions accumulate greater tau than TDP-43 pathology; however, the patterns of laminar neurodegeneration across diverse cytoarchitecture in bvFTD are understudied. We hypothesized that bvFTD-tau and bvFTD-TDP have distinct laminar distributions of pyramidal neurodegeneration along cortical gradients, a topological order of cytoarchitectonic subregions based on increasing pyramidal density and laminar differentiation. Here, we tested this hypothesis in a frontal cortical gradient consisting of five cytoarchitectonic types (i.e. periallocortex, agranular mesocortex, dysgranular mesocortex, eulaminate-I isocortex and eulaminate-II isocortex) spanning the anterior cingulate, paracingulate, orbitofrontal and mid-frontal gyri in bvFTD-tau (n = 27), bvFTD-TDP (n = 47) and healthy controls (n = 32). We immunostained all tissue for total neurons (NeuN; neuronal-nuclear protein) and pyramidal neurons (SMI32; non-phosphorylated neurofilament) and digitally quantified NeuN-immunoreactivity (ir) and SMI32-ir in supragranular II-III, infragranular V-VI and all I-VI layers in each cytoarchitectonic type. We used linear mixed-effects models adjusted for demographic and biological variables to compare SMI32-ir between groups and examine relationships with the cortical gradient, long-range pathways and clinical symptoms. We found regional and laminar distributions of SMI32-ir expected for healthy controls, validating our measures within the cortical gradient framework. The SMI32-ir loss was relatively uniform along the cortical gradient in bvFTD-TDP, whereas SMI32-ir decreased progressively along the cortical gradient of bvFTD-tau and included greater SMI32-ir loss in supragranular eulaminate-II isocortex in bvFTD-tau versus bvFTD-TDP (P = 0.039). Using a ratio of SMI32-ir to model known long-range connectivity between infragranular mesocortex and supragranular isocortex, we found a larger laminar ratio in bvFTD-tau versus bvFTD-TDP (P = 0.019), suggesting that select long-projecting pathways might contribute to isocortical-predominant degeneration in bvFTD-tau. In cytoarchitectonic types with the highest NeuN-ir, we found lower SMI32-ir in bvFTD-tau versus bvFTD-TDP (P = 0.047), suggesting that pyramidal neurodegeneration might occur earlier in bvFTD-tau. Lastly, we found that reduced SMI32-ir was related to behavioural severity and frontal-mediated letter fluency, not temporal-mediated confrontation naming, demonstrating the clinical relevance and specificity of frontal pyramidal neurodegeneration to bvFTD-related symptoms. Our data suggest that loss of neurofilament-rich pyramidal neurons is a clinically relevant feature of bvFTD that worsens selectively along a frontal cortical gradient in bvFTD-tau, not bvFTD-TDP. Therefore, tau-mediated degeneration might preferentially involve pyramidal-rich layers that connect more distant cytoarchitectonic types. Moreover, the hierarchical arrangement of cytoarchitecture along cortical gradients might be an important neuroanatomical framework for identifying which types of cells and pathways are involved differentially between proteinopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706280PMC
http://dx.doi.org/10.1093/brain/awae263DOI Listing

Publication Analysis

Top Keywords

cortical gradient
24
bvftd-tau bvftd-tdp
12
pyramidal neurodegeneration
12
cytoarchitectonic types
12
bvftd-tau versus
12
versus bvftd-tdp
12
bvftd-tau
10
cortical
9
smi32-ir
9
behavioural variant
8

Similar Publications

Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.

View Article and Find Full Text PDF

Background: Central arterial stiffening is associated with brain white matter (WM) damage and gray matter (GM) volume loss in older adults, but little is known about this association from an adult lifespan perspective.

Purpose: To investigate the associations of central arterial stiffness with WM microstructural organization, WM lesion load, cortical thickness, and GM volume in healthy adults across the lifespan.

Study Type: This is a cross-sectional study.

View Article and Find Full Text PDF

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear.

Objective: This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults

Methods: We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden).

View Article and Find Full Text PDF

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!