Sustainable Manufacturing of Multifunctional Fluorine-Free Superslippery Flexible Surfaces.

ACS Appl Mater Interfaces

Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India.

Published: August 2024

Surface contamination and friction result in significant energy losses with widespread environmental impact. In the present work, we developed fluorine-free super-slippery surfaces employing environmentally friendly and simple biofuel-based flame treatment of polydimethylsiloxane (PDMS). Through a unique combination of processing parameters, highly transparent (>90%) and flexible films were engineered with omniphobic, anti-icing, and ultra-low friction properties. The processed films showed an extremely low tilting angle (<5°) and contact angle hysteresis (<4°) against different liquids, even under subzero temperatures. The coefficient of friction (COF) reduced to 0.01 after processing compared to ∼1 for PDMS. Extremely low ice adhesion of <20 kPa and enhanced freezing time ensured anti-icing behavior. The exceptional multidimensional traits were derived from the extremely stable silicone lubricant layer ensured by the hierarchically structured wrinkles. Wind tunnel tests showed that an air drag velocity of less than 0.5 m/s was sufficient to initiate droplet motion, highlighting low interfacial friction that leads to an anti-staining nature. Sustaining the self-cleaning and anti-staining characteristics, the processed surface showed utmost durability under different harsh conditions. The super-slippery surfaces with multifunctional characteristics fabricated through a sustainable route can be effectively used for various engineering and industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c01874DOI Listing

Publication Analysis

Top Keywords

sustainable manufacturing
4
manufacturing multifunctional
4
multifunctional fluorine-free
4
fluorine-free superslippery
4
superslippery flexible
4
flexible surfaces
4
surfaces surface
4
surface contamination
4
contamination friction
4
friction result
4

Similar Publications

Precision fermentation in the realm of microbial protein production: State-of-the-art and future insights.

Food Res Int

January 2025

Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil. Electronic address:

Food security issues are becoming more pressing due to the world's rapid population expansion and climate change, which also drive up demand for nutrient-dense commodities like meat and cereals. Conventional agricultural practices, which depend on pesticides, fertilizers, and antibiotics, are exacerbating environmental problems, such as antibiotic resistance. Precision fermentation has become a game-changing technique that uses microorganisms to create high-value food ingredients more efficiently and with less negative environmental impact.

View Article and Find Full Text PDF

Advances in cellulose-based self-powered ammonia sensors.

Carbohydr Polym

March 2025

Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China. Electronic address:

Ammonia sensors are widely used across applications in food monitoring, environmental surveillance, and medical research, where high safety standards are essential. Cellulose-based materials are particularly well-suited to meet these stringent requirements, with significant potential for innovation due to their biodegradability and biocompatibility. Of the various cellulose-based ammonia sensors available, self-powered sensors, especially those based on triboelectric nanogenerators (TENGs), stand out for their unique advantages, including the absence of an external power supply, environmental sustainability, and ease of integration.

View Article and Find Full Text PDF

Mycelium-based composites: An updated comprehensive overview.

Biotechnol Adv

January 2025

Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta. Electronic address:

Mycelium-based composites hold significant potential as sustainable alternatives to traditional materials, offering innovative solutions to the escalating challenges of global warming and climate change. This review examines their production techniques, advantages, and limitations, emphasizing their role in addressing pressing environmental and economic concerns. Current applications span various industries, including manufacturing and biomedical fields, where mycelium-based composites demonstrate the capacity to mitigate environmental impact and enhance economic sustainability.

View Article and Find Full Text PDF

Modeling regional private income and its embedded carbon emissions: sources, flows and inequalities.

Sci Total Environ

January 2025

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130012, China; School of Earth and Environmental Sciences, Cardiff University, Cardiff CF10 3AT, UK. Electronic address:

Composing regional total income jointly with government income, private income represents levels of development and affluence from the household perspective. Considering the need for fair carbon emission reduction responsibility distributions among regions with divergent income levels, private income-embedded emission (PIEE) and the inter-regional inequalities remain to be explored. Combining input-output analysis and the Gini coefficient, this study traces the sources and disposals of regional private income in China, as well as their embedded carbon emission flow, and quantifies the distribution and inequality of PIEE across industrial sectors and provincial regions.

View Article and Find Full Text PDF

Edible mushrooms have been used as sustainable sources of proteases of industrial interest. The aim of this research was to investigate the influence of different culture media on mycelial growth and the potential of an Amazonian mushroom species, Auricularia fuscosuccinea DPUA 1624, in the biosynthesis of bovine milk coagulant enzymes. The species was cultivated on Sabouraud agar, malt, glucose, and peptone agar, malt extract agar, and glucose and peptone agar, supplemented with yeast extract for mycelial development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!