Porous ZIF-8 and ZIF-67 were synthesized via a green steam-assisted dry-gel technique and investigated as potential catalysts for CO electroreduction. The synthesis conditions are found to significantly influence the growth of these metal-organic frameworks (MOFs). Notably, the water content employed during synthesis plays a crucial role in shaping the morphological properties of ZIF-8. Specifically, a moderate water content results in the formation of uniform ZIF-8 with a size distribution ranging from 240-440 nm. During CO electroreduction, these morphological properties exert substantial effects on the selectivity for CO formation, thereby facilitating the production of syngas with adjustable CO: H ratios. This feature holds promise for the widespread adoption of syngas as a clean alternative to fossil fuels, offering potential benefits for electricity generation and liquid fuel production. Despite sharing similar structural properties with ZIF-8, ZIF-67 exhibits distinct performance characterized by its limited selectivity for CO electroreduction. This discrepancy is attributed to the different metal centers of the two MOFs, resulting in the distinct activation of CO and HO molecules and their further reduction. This finding highlights the critical role of metal centers in MOF-based materials for electrocatalysis application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202400684 | DOI Listing |
Chem Soc Rev
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China.
Metal-organic frameworks (MOFs) hold considerable promise for environmental remediation owing to their exceptional performance and distinctive structure. Nonetheless, the practical implementation of MOFs encounters persistent technical hurdles, notably susceptibility to loss, challenging recovery, and potential environmental toxicity arising from the fragility, insolubility, and poor processability of MOFs. MOF-based three-dimensional macrostructures (3DMs) inherit the advantageous attributes of the original MOFs, such as ultra-high specific surface area, tunable pore size, and customizable structure, while also incorporating the intriguing characteristics of bulk materials, including hierarchical structure, facile manipulation, and structural flexibility.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, College of Science, University of Sulaimani, Qliasan St., 46002 Sulaymaniyah, Kurdistan Region, Iraq.
Metal-organic frameworks (MOFs) have emerged as innovative nanozyme mimics, particularly in the area of oxidase catalysis, outperforming traditional MOF-based peroxidase and other nanomaterial-based oxidase systems. This review explores the various advantages that MOFs offer in terms of catalytic activity, low-cost, stability, and structural versatility. With a primary focus on their application in biochemical sensing, MOF-based oxidases have demonstrated remarkable utility, prompting a thorough exploration of their design and modification strategies.
View Article and Find Full Text PDFMolecules
December 2024
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
Metal-organic frameworks (MOFs) represent a category of crystalline materials formed by the combination of metal ions or clusters with organic linkers, which have emerged as a prominent research focus in the field of photocatalysis. Owing to their distinctive characteristics, including structural diversity and configurations, significant porosity, and an extensive specific surface area, they provide a flexible foundation for various potential applications in photocatalysis. In recent years, researchers have tackled many issues in the MOF-based photocatalytic yield.
View Article and Find Full Text PDFFood Chem
December 2024
School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:
Metal-organic frameworks (MOFs) are highly valued for their electronic and optical capabilities in food sample analysis. Implementing MOF-based sensors is crucial for public health safety. This review centers on electrochemiluminescence (ECL) MOFs for monitoring food samples, highlighting signal changes from combining MOFs with Ru(bpy), TPrA, nanomaterials, and biomolecules.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of HBNI, Bhubaneswar, 752050, Odisha, India.
Neuromorphic and fully analog in-memory computations are promising for handling vast amounts of data with minimal energy consumption. We have synthesized and studied a series of homo-bimetallic silver purine MOFs (1D and 2D) having direct metal-metal bonding. The N7-derivatized purine ligands are designed to form bi-metallic complexes under ambient conditions, extending to a 1D or 2D metal-organic framework.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!