Systems-Level Modeling for CRISPR-Based Metabolic Engineering.

ACS Synth Biol

Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States.

Published: September 2024

The CRISPR-Cas system has enabled the development of sophisticated, multigene metabolic engineering programs through the use of guide RNA-directed activation or repression of target genes. To optimize biosynthetic pathways in microbial systems, we need improved models to inform design and implementation of transcriptional programs. Recent progress has resulted in new modeling approaches for identifying gene targets and predicting the efficacy of guide RNA targeting. Genome-scale and flux balance models have successfully been applied to identify targets for improving biosynthetic production yields using combinatorial CRISPR-interference (CRISPRi) programs. The advent of new approaches for tunable and dynamic CRISPR activation (CRISPRa) promises to further advance these engineering capabilities. Once appropriate targets are identified, guide RNA prediction models can lead to increased efficacy in gene targeting. Developing improved models and incorporating approaches from machine learning may be able to overcome current limitations and greatly expand the capabilities of CRISPR-Cas9 tools for metabolic engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.4c00053DOI Listing

Publication Analysis

Top Keywords

metabolic engineering
12
improved models
8
guide rna
8
systems-level modeling
4
modeling crispr-based
4
crispr-based metabolic
4
engineering
4
engineering crispr-cas
4
crispr-cas system
4
system enabled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!