Metabolic reprogramming is a k`ey hallmark of tumors, developed in response to hypoxia and nutrient deficiency during tumor progression. In both cancer and immune cells, there is a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, also known as the Warburg effect, which then leads to lactate acidification, increased lipid synthesis, and glutaminolysis. This reprogramming facilitates tumor immune evasion and, within the tumor microenvironment (TME), cancer and immune cells collaborate to create a suppressive tumor immune microenvironment (TIME). The growing interest in the metabolic reprogramming of the TME, particularly its significance in colorectal cancer (CRC)-one of the most prevalent cancers-has prompted us to explore this topic. CRC exhibits abnormal glycolysis, glutaminolysis, and increased lipid synthesis. Acidosis in CRC cells hampers the activity of anti-tumor immune cells and inhibits the phagocytosis of tumor-associated macrophages (TAMs), while nutrient deficiency promotes the development of regulatory T cells (Tregs) and M2-like macrophages. In CRC cells, activation of G-protein coupled receptor 81 (GPR81) signaling leads to overexpression of programmed death-ligand 1 (PD-L1) and reduces the antigen presentation capability of dendritic cells. Moreover, the genetic and epigenetic cell phenotype, along with the microbiota, significantly influence CRC metabolic reprogramming. Activating RAS mutations and overexpression of epidermal growth factor receptor (EGFR) occur in approximately 50% and 80% of patients, respectively, stimulating glycolysis and increasing levels of hypoxia-inducible factor 1 alpha (HIF-1α) and MYC proteins. Certain bacteria produce short-chain fatty acids (SCFAs), which activate CD8+ cells and genes involved in antigen processing and presentation, while other mechanisms support pro-tumor activities. The use of immune checkpoint inhibitors (ICIs) in selected CRC patients has shown promise, and the combination of these with drugs that inhibit aerobic glycolysis is currently being intensively researched to enhance the efficacy of immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306065PMC
http://dx.doi.org/10.3389/fimmu.2024.1353787DOI Listing

Publication Analysis

Top Keywords

metabolic reprogramming
16
tumor immune
12
immune cells
12
immune
8
immune microenvironment
8
colorectal cancer
8
nutrient deficiency
8
cancer immune
8
cells
8
aerobic glycolysis
8

Similar Publications

Metabolic reprogramming in inflammaging and aging in T cells.

Life Metab

October 2023

Department of Fundamental Oncology, University of Lausanne, 1007 Lausanne, Switzerland.

Aging represents an emerging challenge for public health due to the declined immune responses against pathogens, weakened vaccination efficacy, and disturbed tissue homeostasis. Metabolic alterations in cellular and systemic levels are also known to be cardinal features of aging. Moreover, cellular metabolism has emerged to provide regulations to guide immune cell behavior via modulations on signaling cascades and epigenetic landscape, and the aberrant aging process in immune cells can lead to inflammaging, a chronic and low-grade inflammation that facilitates aging by perturbing homeostasis in tissues and organs.

View Article and Find Full Text PDF

Cytoplasmic DNA sensing boosts CD4 T cell metabolism for inflammatory induction.

Life Med

June 2023

CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

DNA accumulation is associated with the development of autoimmune inflammatory diseases. However, the pathological role and underlying mechanism of cytoplasmic DNA accumulation in CD4 T cells have not been well established. Here, we show that deficiency-induced endogenous DNA accumulation in CD4 T cells greatly promoted their induction of autoimmune inflammation in a lupus-like mouse model.

View Article and Find Full Text PDF

Hypoxia-induced one-carbon metabolic reprogramming in glioma stem-like cells.

Life Med

December 2023

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Glioma stem cells (GSCs) in the hypoxic niches contribute to tumor initiation, progression, and recurrence in glioblastoma (GBM). Metabolic pathways are altered in GSCs under hypoxia, but the mechanism underlying the altered one-carbon metabolism in GSCs by hypoxia is largely unknown. Here, we report that hypoxia induces down-regulation of DHFR as well as up-regulation of MAT2A in GBM tumorsphere cells, and confers them the ability of cell proliferation that is independent of exogenous folate.

View Article and Find Full Text PDF

The majority of cancer patients are among aged population, suggesting an urgent need to advance our knowledge on complicated relationship between aging and cancer. It has been hypothesized that metabolic changes during aging could act as a driver for tumorigenesis. Given the fact that mitochondrial DNA (mtDNA) mutations are common in both tumors and aged tissues, it is interesting to contemplate possible role of age-related mtDNA mutations in tumorigenesis.

View Article and Find Full Text PDF

Metal-Phenolic Nanomedicines Targeting Fatty Acid Metabolic Reprogramming to Overcome Immunosuppression in Radiometabolic Cancer Therapy.

ACS Appl Mater Interfaces

January 2025

Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.

Radiation therapy (RT) is a prevalent cancer treatment; however, its therapeutic outcomes are frequently impeded by tumor radioresistance, largely attributed to metabolic reprogramming characterized by increased fatty acid uptake and oxidation. To overcome this limitation, we developed polyphenol-metal coordination polymer (PPWQ), a novel nanoradiotherapy sensitizer specifically designed to regulate fatty acid metabolism and improve RT efficacy. These nanoparticles (NPs) utilize a metal-phenolic network (MPN) to integrate tungsten ions (W), quercetin (QR), and a PD-L1-blocking peptide within a PEG-polyphenol scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!