The luminal surface of the endothelium is exposed to dynamic blood flow patterns that are known to affect endothelial cell phenotype. While many studies have documented the phenotypic changes by gene or protein expression, less is known about the role of blood flow pattern on the endothelial cell (EC) lipidome. In this study, shotgun lipidomics was conducted on human aortic ECs (HAECs) exposed to unidirectional laminar flow (UF), disturbed flow (DF), or static conditions for 48 h. A total of 520 individual lipid species from 17 lipid subclasses were detected. Total lipid abundance was significantly increased for HAECs exposed to DF compared to UF conditions. Despite the increase in the total lipid abundance, HAECs maintained equivalent composition of each lipid subclass (% of total lipid) under DF and UF. However, by lipid composition (% of total subclass), 28 lipid species were significantly altered between DF and UF. Complimentary RNA sequencing of HAECs exposed to UF or DF revealed changes in transcripts involved in lipid metabolism. Shotgun lipidomics was also performed on HAECs exposed to pro-inflammatory agonists lipopolysaccharide (LPS) or Pam3CSK4 (Pam3) for 48 h. Exposure to LPS or Pam3 reshaped the EC lipidome in both unique and overlapping ways. In conclusion, exposure to flow alters the EC lipidome and ECs undergo stimulus-specific lipid reprogramming in response to pro-inflammatory agonist exposure. Ultimately, this work provides a resource to profile the transcriptional and lipidomic changes that occur in response to applied flow that can be accessed by the vascular biology community to further dissect and extend our understanding of endothelial lipid biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11307263 | PMC |
http://dx.doi.org/10.3389/fphys.2024.1431847 | DOI Listing |
Stem Cell Res Ther
December 2024
Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Objective: Spinal cord injury (SCI) is a severe and permanent nerve damage condition that poses significant burdens on individuals and society. Various therapeutic approaches have been explored to mitigate the consequences of SCI. Tissue engineering and regenerative medicine have emerged as a promising avenue for addressing this issue.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Avenue CH13B, Portland, OR, 97239, USA. Electronic address:
Heparan sulfate (HS) is the most abundant glycosaminoglycan on the vascular endothelium and can regulate endothelial cell morphology and function in response to mechanical stimuli. This study investigated endothelial HS response to an inflammatory stimulus under static and arterial shear stress conditions. Human aortic endothelial cells (HAECs) under static conditions expressed significantly higher HS when treated with an inflammatory stimulus compared to untreated controls.
View Article and Find Full Text PDFPart Fibre Toxicol
October 2024
Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, School of Medicine, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA.
Ocul Surf
October 2024
Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea; Bio-Medical Institute, Kyungpook National University Hospital, Jung-gu, Daegu, Republic of Korea. Electronic address:
Heliyon
August 2024
Electrocardiogram Room, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China.
Endothelial cell injury plays an important role in initiating atherosclerotic lesion formation. Insulin-like growth factor binding protein 7 (IGFBP7) is known to modulate the behaviors of tumor-associated endothelial cells. This study was conducted to test whether IGFBP7 is involved in endothelial cell injury during atherosclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!