Porous materials have attracted interest due to their high specific surface area and rich functionality. Immobilizing organocatalysts onto porous polymers not only boosts enantioselectivity but also improves the reaction rates. In this work, a series of porous polymers C-poly-3s with rigid polyisocyanide-carrying secondary amine pendants as building blocks were successfully prepared. And the pore size and optical activity of C-poly-3s can be controlled by the length of the polyisocyanide blocks due to their rigid and helical backbone. C-poly-3 demonstrated a preferred left-handed helix with a value of -8.21 × 10. The pore size and of C-poly-3 were 17.52 nm and 7.98 m g, respectively. The porous C-poly-3 catalyzes the asymmetric Michael addition reaction efficiently and generates the target products in satisfactory yield and excellent enantioselectivity. For 6ab, an enantiomeric excess (ee) and a diastereomeric ratio (dr) up to 99% and 99/1 could be achieved, respectively. The recovered catalyst can be recycled at least 6 times in the asymmetric Michael addition reaction while maintaining activity and stereoselectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304732PMC
http://dx.doi.org/10.1039/d4sc01316fDOI Listing

Publication Analysis

Top Keywords

asymmetric michael
12
michael addition
12
porous polymers
8
pore size
8
addition reaction
8
helical polyisocyanide-based
4
polyisocyanide-based macroporous
4
macroporous organic
4
organic catalysts
4
catalysts asymmetric
4

Similar Publications

To maintain stable vision, behaving animals make compensatory eye movements in response to image slip, a reflex known as the optokinetic response (OKR). Although OKR has been studied in several avian species, eye movements during flight are expected to be minimal. This is because vertebrates with laterally placed eyes typically show weak OKR to nasal-to-temporal motion (NT), which simulates typical forward locomotion, compared with temporal-to-nasal motion (TN), which simulates atypical backward locomotion.

View Article and Find Full Text PDF

Asymmetric Total Syntheses of Sarglamides A, C, and E.

J Org Chem

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China.

The asymmetric total syntheses of sarglamides A, C, and E in concise and protecting group free fashion is disclosed. Key steps involve an -selective Diels-Alder reaction to construct the bicyclo[2.2.

View Article and Find Full Text PDF

Catalytic Asymmetric Total Synthesis of (+)-Chamaecydin and (+)-Isochamaecydin and their Stereoisomers.

Angew Chem Int Ed Engl

January 2025

Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China.

A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.

View Article and Find Full Text PDF

Solitary fibrous tumours (SFTs) are rare soft tissue masses that are often clinically silent until they cause mass effect. A paraneoplastic syndrome manifesting as persistent hypoglycaemia, termed Doege-Potter syndrome (DPS), can be associated with these lesions. Surgical treatment is recommended for the management of these tumours.

View Article and Find Full Text PDF

Secupyritines A-C are unique polycyclic Securinega alkaloids isolated from medicinal plant Flueggea suffruticosa. They feature a distinctive 6/6/6/5/6 fused pentacyclic ring system with a highly strained 2-oxa-6-aza[4.4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!