Nonplanar structure accelerates reverse intersystem crossing of TADF emitters: nearly 40% EQE and relieved efficiency roll off.

Chem Sci

National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China

Published: August 2024

Exploring strategies to enhance reverse intersystem crossing (RISC) is of great significance to develop efficient thermally activated delayed fluorescent (TADF) molecules. In this study, we investigate the substantial impact of nonplanar structure on improving the rate of RISC ( ). Three emitters based on spiroacridine donors are developed to evaluate this hypothesis. All molecules exhibit high photoluminescent quantum yields (PLQYs) of 96-98% due to their rigid donor and acceptor. Leveraging the synergistic effects of heavy element effect and nonplanar geometry, S2-TRZ exhibits an accelerated of 24.2 × 10 s compared to the 11.1 × 10 s of S1-TRZ, which solely incorporates heavy atoms. Additionally, O1-TRZ possesses a further lower of 9.42 × 10 s because of the absence of these effects. Remarkably, owing to the high PLQYs and suitable TADF behaviors, devices based on these emitters exhibit state-of-the-art performance, including a maximum external quantum efficiency of up to 40.1% and maximum current efficiency of 124.7 cd A. More importantly, devices utilizing S2-TRZ as an emitter achieve a relieved efficiency roll-off of only 7% under 1000 cd m, in contrast to the 12% for O1-TRZ and 11% for S1-TRZ, respectively. These findings advance our fundamental understanding of TADF processes for high-performance electroluminescent devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304530PMC
http://dx.doi.org/10.1039/d4sc03111cDOI Listing

Publication Analysis

Top Keywords

nonplanar structure
8
reverse intersystem
8
intersystem crossing
8
relieved efficiency
8
structure accelerates
4
accelerates reverse
4
tadf
4
crossing tadf
4
tadf emitters
4
emitters 40%
4

Similar Publications

The creation of hosts capable of accommodating different guest molecules may enable these hosts to play useful roles in chemical purifications, among other applications. Metal-organic cages are excellent hosts for various guests, but they generally incorporate rigid structural units that hinder dynamic adaptation to specific guests. Here we report a conformationally adaptable pseudo-cubic cage that can dynamically increase its cavity volume to fit guests with differing sizes.

View Article and Find Full Text PDF

Regioisomeric π-Extended Nanographene with Long-lived Phosphorescence Afterglow.

Angew Chem Int Ed Engl

January 2025

NCL: CSIR National Chemical Laboratory, Organic Chemistry, Dr. Homi Bhabha Road, 411008, Pune, INDIA.

The cutouts of graphene sheets, particularly those with a nonplanar topology, present vast opportunities for advancement. Even a slight deviation from the planar structure can lead to intriguing (chiro)optical features for helically twisted nanographenes. In this context, we introduce two regioisomeric π-extended nanographenes that exhibit distinct excited-state characteristics.

View Article and Find Full Text PDF

Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.

View Article and Find Full Text PDF

Intelligent reflecting surfaces (IRS) are valuable tools for enhancing the intelligence of the propagation environment. They have the ability to direct EM Waves to a specific user through beamforming. A significant number of passive elements are integrated into metasurfaces, allowing for their incorporation onto various surfaces such as walls and buildings.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) with nonplanar configurations possess unique capabilities for tailoring the oxygen reduction reaction (ORR) catalytic performance compared with the ones with planar configurations, owing to the additional orbital rearrangement arising from the asymmetric coordination atoms. However, the systematic investigation of these nonplanar SACs has long been hindered by the difficulty in screening feasible nonplanar configurations and precisely controlling the coordination structures. Herein, we demonstrate a combined high-throughput screening and experimental verification of nonplanar SACs (ppy-MN3) for highly active and selective 2e- ORR electrocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!