Many functions of ribonucleic acid (RNA) rely on its ability to assume specific sequence-structure motifs. Packaging signals found in certain RNA viruses are one such prominent example of functional RNA motifs. These signals are short hairpin loops that interact with coat proteins and drive viral self-assembly. As they are found in different positions along the much longer genomic RNA, the formation of their correct structure occurs as a part of a larger context. Any changes to this context can consequently lead to changes in the structure of the motifs themselves. In fact, previous studies have shown that structure and function of RNA motifs can be highly context sensitive to the flanking sequence surrounding them. However, in what ways different flanking sequences influence the structure of an RNA motif they surround has yet to be studied in detail. We focus on a hairpin-rich region of the RNA genome of bacteriophage MS2-a well-studied RNA virus with a wide potential for use in biotechnology-and systematically examine context-dependent structural stability of 14 previously identified hairpin motifs, which include putative and confirmed packaging signals. Combining secondary and tertiary RNA structure prediction of the hairpin motifs placed in different contexts, ranging from the native genomic sequence to random RNA sequences and unstructured poly-U sequences, we determine different measures of motif structural stability. In this way, we show that while some motif structures can be stable in any context, others require specific context provided by the genome. Our results demonstrate the importance of context in RNA structure formation and how changes in the flanking sequence of an RNA motif sometimes lead to drastic changes in its structure. Structural stability of a motif in different contexts could provide additional insights into its functionality as well as assist in determining whether it remains functional when intentionally placed in other contexts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480767 | PMC |
http://dx.doi.org/10.1016/j.bpj.2024.08.004 | DOI Listing |
J Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFBioinformatics
January 2025
School of Computing and Artificial Intelligence, Southwest Jiaotong University, Sichuan 611756, China.
Motivation: The rapid development of single-cell RNA sequencing (scRNA-seq) has significantly advanced biomedical research. Clustering analysis, crucial for scRNA-seq data, faces challenges including data sparsity, high dimensionality, and variable gene expressions. Better low-dimensional embeddings for these complex data should maintain intrinsic information while making similar data close and dissimilar data distant.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
Strain NoAH (=KACC 23135=JCM 35999), a novel Gram-negative, motile bacterium with a rod-shaped morphology, was isolated from the zoo animal faecal samples, specifically the long-tailed goral species . The novel bacterial strain grew optimally in a nutrient broth medium under the following conditions: 1-2% (w/v) NaCl, pH 7-8 and 30 °C. The strain NoAH exhibited high tolerance to NaCl, with the ability to tolerate up to 7% (w/v) NaCl.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!