β-Branched chiral amines with contiguous stereocenters are valuable building blocks for preparing various biologically active molecules. However, their asymmetric synthesis remains challenging. Herein, we report a highly diastereo- and enantioselective biocatalytic approach for preparing a broad range of β-branched chiral amines starting from their corresponding racemic ketones. This involves a dynamic kinetic resolution-asymmetric reductive amination process catalyzed using only an imine reductase. Four rounds of protein engineering endowed wild-type PocIRED with higher reactivity, better stereoselectivity, and a broader substrate scope. Using the engineered enzyme, various chiral amine products were synthesized with up to >99.9 % ee, >99 : 1 dr, and >99 % conversion. The practicability of the developed biocatalytic method was confirmed by producing a key intermediate of tofacitinib in 74 % yield, >99.9 % ee, and 98 : 2 dr at a challenging substrate loading of 110 g L. Our study provides a highly capable imine reductase and a protocol for developing an efficient biocatalytic dynamic kinetic resolution-asymmetric reductive amination reaction system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202408686 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!