Predicting curve progression during the initial visit is pivotal in the disease management of patients with adolescent idiopathic scoliosis (AIS)-identifying patients at high risk of progression is essential for timely and proactive interventions. Both radiological and clinical factors have been investigated as predictors of curve progression. With the evolution of machine learning technologies, the integration of multidimensional information now enables precise predictions of curve progression. This review focuses on the application of machine learning methods to predict AIS curve progression, analyzing 15 selected studies that utilize various machine learning models and the risk factors employed for predictions. Key findings indicate that machine learning models can provide higher precision in predictions compared to traditional methods, and their implementation could lead to more personalized patient management. However, due to the model interpretability and data complexity, more comprehensive and multi-center studies are needed to transition from research to clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308564PMC
http://dx.doi.org/10.1186/s12938-024-01272-6DOI Listing

Publication Analysis

Top Keywords

machine learning
20
curve progression
16
application machine
8
learning methods
8
adolescent idiopathic
8
idiopathic scoliosis
8
learning models
8
progression
6
learning
5
methods predicting
4

Similar Publications

Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!