Background: Proteomic stable isotope probing (SIP) is used in microbial ecology to trace a non-radioactive isotope from a labeled substrate into de novo synthesized proteins in specific populations that are actively assimilating and metabolizing the substrate in a complex microbial community. The Sipros algorithm is used in proteomic SIP to identify variably labeled proteins and quantify their isotopic enrichment levels (atom%) by performing enrichment-resolved database searching.
Results: In this study, Sipros was upgraded to improve the labeled protein identification, isotopic enrichment quantification, and database searching speed. The new Sipros 4 was compared with the existing Sipros 3, Calisp, and MetaProSIP in terms of the number of identifications and the accuracy and precision of atom% quantification on both the peptide and protein levels using standard E. coli cultures with 1.07 atom%, 2 atom%, 5 atom%, 25 atom%, 50 atom%, and 99 atom% C enrichment. Sipros 4 outperformed Calisp and MetaProSIP across all samples, especially in samples with ≥ 5 atom% C labeling. The computational speed on Sipros 4 was > 20 times higher than Sipros 3 and was on par with the overall speed of Calisp- and MetaProSIP-based pipelines. Sipros 4 also demonstrated higher sensitivity for the detection of labeled proteins in two C-SIP experiments on a real-world soil community. The labeled proteins were used to trace C from C-methanol and C-labeled plant exudates to the consuming soil microorganisms and their newly synthesized proteins.
Conclusion: Overall, Sipros 4 improved the quality of the proteomic SIP results and reduced the computational cost of SIP database searching, which will make proteomic SIP more useful and accessible to the border community. Video Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313024 | PMC |
http://dx.doi.org/10.1186/s40168-024-01866-1 | DOI Listing |
Int J Biol Macromol
January 2025
College of Information Science and Engineering, Northeastern University, China.
Protein-protein interactions (PPI) are crucial for understanding numerous biological processes and pathogenic mechanisms. Identifying interaction sites is essential for biomedical research and targeted drug development. Compared to experimental methods, accurate computational approaches for protein-protein interaction sites (PPIS) prediction can save significant time and costs.
View Article and Find Full Text PDFNanotechnology
January 2025
Kwangwoon University, 20 Kwangwoonro Nowon-Gu Seoul, Nowon-gu, 01897, Korea (the Republic of).
To implement a neuromorphic computing system capable of efficiently processing vast amounts of unstructured data, a significant number of synapse and neuron devices are needed, resulting in increased area demands. Therefore, we developed a nanoscale vertically structured synapse device that supports high-density integration. To realize this synapse device, the interface effects between the resistive switching layer and the electrode were investigated and utilized.
View Article and Find Full Text PDFACS Nano
January 2025
James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.
Phonon dynamics and transport determine how heat is utilized and dissipated in materials. In 2D systems for optoelectronics and thermoelectrics, the impact of nanoscale material structure on phonon propagation is central to controlling thermal conduction. Here, we directly observe in-plane coherent acoustic phonon propagation in black phosphorus (BP) using ultrafast electron microscopy.
View Article and Find Full Text PDFScience
January 2025
Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!