Background: Several studies have explored the potential link between gut microbiota and breast cancer; nevertheless, the causal relationship between gut microbiota and breast cancer remains unclear.
Methods: We utilized summary statistics from genome-wide association studies (GWAS) of the gut microbiome from the MiBioGen project with summary data from GWAS on breast cancer from the FinnGen consortium and the IEU database, with the IEU data sourced from the Biobank Japan. Preliminary statistical analyses were conducted using inverse variance weighting (IVW), supplemented by various sensitivity analysis methods, including MR-Egger regression, weighted median, weighted mode, simple median, and simple mode, to ensure the robustness of our findings. Heterogeneity and pleiotropy were assessed to avoid misleading conclusions caused by unconsidered confounders or non-specific effects of genetic variants, ensuring that the results reflect a genuine causal relationship.
Results: In European populations, four types of gut microbiota were associated with breast cancer. The genus Erysipelatoclostridium was positively associated with the risk of breast cancer, with an odds ratio (OR) of 1.21 (95% confidence interval [CI] 1.083-1.358), false discovery rate (FDR) = 0.0039. The class Coriobacteriia, order Coriobacteriales, and family Coriobacteriaceae, which belong to the same phylogenetic system, showed a consistent inversely association with breast cancer risk, with an OR of 0.757 (95% CI 0.616-0.930), FDR = 0.0281. In East Asian populations, three types of gut microbiota were related to breast cancer. The Eubacterium ruminantium group was positively associated with breast cancer risk, with an OR of 1.259 (95% CI 1.056-1.499), FDR = 0.0497. The families Porphyromonadaceae and Ruminococcaceae were inversely associated with breast cancer risk, with ORs of 0.304 (95% CI 0.155-0.596), FDR = 0.0005, and 0.674 (95% CI 0.508-0.895), FDR = 0.03173, respectively. However, these two taxa had limited instrumental variables, restricting the statistical power and potentially affecting the interpretation of the results.
Conclusion: This MR analysis demonstrated a probable causal link between specific gut microbiota and breast cancer. This study, through Mendelian randomization analysis comparing European and East Asian populations, reveals that gut microbiota may influence breast cancer risk differently across populations, providing potential directions for developing targeted prevention and treatment methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308141 | PMC |
http://dx.doi.org/10.1186/s12885-024-12721-9 | DOI Listing |
IUBMB Life
January 2025
Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.
View Article and Find Full Text PDFCancer
February 2025
General Medicine Service, VA Puget Sound Health Care System, Seattle, Washington, USA.
Background: Breast cancer screening (BCS) inequities are evident at national and local levels, and many health systems want to address these inequities, but may lack data about contributing factors. The objective of this study was to inform health system interventions through an exploratory analysis of potential multilevel contributors to BCS inequities using health system data.
Methods: The authors conducted a cross-sectional analysis within a large academic health system including 19,774 individuals who identified as Black (n = 1445) or White (n = 18,329) race and were eligible for BCS.
J Adv Nurs
January 2025
Anesthesiology Department, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei, China.
Cancer
February 2025
Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, G-STeP, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.
View Article and Find Full Text PDFStat Med
February 2025
Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA.
Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!