Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present investigation was undertaken to evaluate the toxic effects of CoCl-induced hepatotoxicity and fatty acid changes in juvenile Cyprinus carpio. Fish were divided into six experimental groups in duplicate. The first group served as controls. The second group received the lowest exposure dose at 2.5 µg/L. In the third group, fish were exposed to 25 µg/L of CoCl. The fourth group was exposed to 50 µg/L of CoCl. The last two groups were exposed to the highest doses, 100 and 500 µg/L of CoCl. Total antioxidant activities were estimated using a colorimetric method. Liver fatty acid compositions were analyzed by high-performance gas chromatography (GC). Hepatopathy was identified through microscopic analysis. Exposure of C. carpio to CoCl resulted in hepatotoxicity, indicated by increased levels of malondialdehyde (MDA), hydrogen peroxide (HO), protein carbonyls (PCO), and alterations in the ferric reducing antioxidant power system (FRAP). Superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GPx), reduced glutathione (GSH), metallothioneins (MTs), and low thiol levels (L-SH) significantly increased, particularly under exposure to the highest CoCl doses (100 and 500 µg/L). Acetylcholinesterase activity decreased significantly in C. carpio exposed to graded CoCl doses. Additionally, there was a decrease in polyunsaturated fatty acids (PUFA), primarily n-3 PUFA, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), while an increase in monounsaturated (MUFA) and saturated fatty acids (SFA), including palmitic (C16:0), stearic (C18:0), palmitoleic (C16:1), and oleic (C18:1) acids, was observed. Histopathological examination of the liver confirmed hepatopathy revealing characteristic tissue changes such as leucocyte infiltration, hepatic cell membrane degradation, vacuolization, and lipid inclusions. The study provided ethnophysiology insights into the responses of C. carpio to CoCl-induced oxidative stress and lipidomic alteration, underscoring its potential as a bioindicator for assessing environmental impacts and metal contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-34578-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!