Segmenting retinal blood vessels poses a significant challenge due to the irregularities inherent in small vessels. The complexity arises from the intricate task of effectively merging features at multiple levels, coupled with potential spatial information loss during successive down-sampling steps. This particularly affects the identification of small and faintly contrasting vessels. To address these challenges, we present a model tailored for automated arterial and venous (A/V) classification, complementing blood vessel segmentation. This paper presents an advanced methodology for segmenting and classifying retinal vessels using a series of sophisticated pre-processing and feature extraction techniques. The ensemble filter approach, incorporating Bilateral and Laplacian edge detectors, enhances image contrast and preserves edges. The proposed algorithm further refines the image by generating an orientation map. During the vessel extraction step, a complete convolution network processes the input image to create a detailed vessel map, enhanced by attention operations that improve modeling perception and resilience. The encoder extracts semantic features, while the Attention Module refines blood vessel depiction, resulting in highly accurate segmentation outcomes. The model was verified using the STARE dataset, which includes 400 images; the DRIVE dataset with 40 images; the HRF dataset with 45 images; and the INSPIRE-AVR dataset containing 40 images. The proposed model demonstrated superior performance across all datasets, achieving an accuracy of 97.5% on the DRIVE dataset, 99.25% on the STARE dataset, 98.33% on the INSPIREAVR dataset, and 98.67% on the HRF dataset. These results highlight the method's effectiveness in accurately segmenting and classifying retinal vessels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10278-024-01219-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!