Camellia oleifera, a significant woody edible oil species, was examined using 48 germplasm resources from high-altitude regions in East Guizhou Province, China, to analyze fruit quality. The analysis aimed to identify high-performance germplasm, providing theoretical and research foundations for selecting and cross-breeding superior C. oleifera varieties in these regions. Fifteen primary traits of mature fruits were measured and analyzed, including four phenotypic traits (single fruit weight, transverse diameter, longitudinal diameter, peel thickness) and eleven quality traits (fresh seed yield rate, dry seed yield rate, dry kernel yield rate, seed kernel oil content, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, α-linolenic acid, cis-11-eicosenoic acid). A comprehensive evaluation employing cluster and principal component analyses (PCA) was conducted. The cluster analysis categorized the germplasms into five groups at a squared Euclidean distance of 14, with the first category comprising 17 germplasms, the second 28, and the third, fourth, and fifth each containing one. PCA reduced the 15 traits to five principal components (PCs), with PC1 having the highest eigenvalue of 3.57 and a contribution rate of 23.8%, mainly representing phenotypic traits. PC2, contributing 20.44%, represented linoleic acid, while PC3, PC4, and PC5, with contribution rates of 12.99%, 9.13%, and 7.45% respectively, predominantly represented seed kernel oil content, fresh seed yield, and palmitoleic acid. Employing a weighted sum method, a comprehensive evaluation function was developed to calculate total scores for each superior individual, forming the basis for rankings and selections. Notable variability was detected in single fruit weight, peel thickness, and fresh and dry seed yields, while oleic acid exhibited the lowest coefficient of variation. Dry seed yield showed a robust positive correlation with seed kernel oil content and the concentrations of palmitic and linoleic acids, whereas seed kernel oil content was inversely correlated with cis-11-eicosenoic acid levels. Five PCs with eigenvalues > 1 were identified, highlighting the top ten superior individuals: QD (Qian Dong: the code of eastern Guizhou Province)-33 > QD-34 > QD-48 > QD-38 > QD-27 > QD-15 > QD-35 > QD-5 > QD-14 > QD-36. Thus, the 48 C. oleifera germplasms from East Guizhou's high-altitude areas demonstrate significant potential for enhancing traits such as single fruit weight, peel thickness, and fresh and dry seed yields. Specifically, QD-33, QD-34, and QD-48 exhibited superior comprehensive performance, designating them as prime candidates for variety selection and breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310447 | PMC |
http://dx.doi.org/10.1038/s41598-024-69454-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!