Salvage Therapy and Allogeneic Hematopoietic Cell Transplantation for the Severe Cytokine Storm Syndrome of Hemophagocytic Lymphohistiocytosis.

Adv Exp Med Biol

Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA.

Published: August 2024

Hemophagocytic lymphohistiocytosis (HLH) can be considered as a severe cytokine storm syndrome disorder. HLH typically manifests as a life-threatening inflammatory syndrome characterized by fevers, cytopenias, hepatosplenomegaly, and various other accompanying manifestations such as coagulopathy, hepatitis or liver failure, seizures or altered mental status, and even multi-organ failure. Standard up-front treatments do not always bring HLH into remission or maintain adequate response, and salvage or alternative therapies are often needed. For patients with genetic diseases that cause HLH, curative allogeneic hematopoietic cell transplantation is usually offered to prevent future episodes of life-threatening HLH. Here, we will discuss the options and approaches for salvage therapy and hematopoietic cell transplantation for patients with HLH.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-59815-9_41DOI Listing

Publication Analysis

Top Keywords

hematopoietic cell
12
cell transplantation
12
salvage therapy
8
allogeneic hematopoietic
8
severe cytokine
8
cytokine storm
8
storm syndrome
8
hemophagocytic lymphohistiocytosis
8
hlh
6
therapy allogeneic
4

Similar Publications

Background: Iron deficiency (ID) is the most common nutritional deficiency among patients undergoing major surgery. Treatment of ID is straightforward, however implementing a comprehensive anemia management strategy within clinical routines is complex. Recently, reticulocyte hemoglobin content (Ret-He) has been evaluated as an early marker for ID diagnosis.

View Article and Find Full Text PDF

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.

View Article and Find Full Text PDF

Background: Myelodysplastic syndromes/neoplasms (MDS) are a diverse group of clonal myeloid disorders. Advances in molecular technology lead to the development of new classification systems. However, large-scale epidemiological studies on MDS in Asian countries are currently scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!