Evidence from previous studies have demonstrated that gut microbiota are closely associated with occurrence of interstitial cystitis/bladder pain syndrome (IC/BPS), yet the causal link between the two is not well known. In this study, we performed a two-sample Mendelian randomization (MR) analysis to determine the possible causal association between gut microbiota with IC/BPS. Gut microbiota summary level data were derived from the genome-wide association study (GWAS) conducted by MiBioGen and the IC/BPS GWAS summary level data were obtained from the GWAS Catalog. Next, we performed an MR study to investigate the causal link between gut microbiota and IC/BPS. The primary method for causal analysis was the inverse variance weighted (IVW), and the MR results were validated through multiple sensitivity analyses. A positive association was found between IC/BPS and eight gut microbial taxa, including genus Bacteroides, genus Haemophilus, genus Veillonella, genus Coprococcus1, genus Butyricimonas, family Bacteroidaceae, family Christensenellaceae, and order Lactobacillales. Sensitivity analysis revealed lack of significant pleiotropy or heterogeneity in the obtained results. This MR analysis reveals that a causal association exists between some gut microbiota with IC/BPS. This finding may is expected to guide future research and development of IC/BPS preventions and treatments based on the bladder-gut axis. However, given the clinical complexity and diagnostic challenges of IC/BPS, along with the limitations of using large-scale GWAS summary data for analysis, our MR results require further validation through additional research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310512PMC
http://dx.doi.org/10.1038/s41598-024-69543-9DOI Listing

Publication Analysis

Top Keywords

gut microbiota
24
microbiota ic/bps
12
ic/bps
9
mendelian randomization
8
reveals causal
8
interstitial cystitis/bladder
8
cystitis/bladder pain
8
pain syndrome
8
syndrome ic/bps
8
causal link
8

Similar Publications

Fecal microbiota transplantation in severe pneumonia: a case report on overcoming pan-drug resistant infection.

Front Med (Lausanne)

December 2024

Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of Joint Logistics Support Force, Fuzhou, China.

Objective: To evaluate the therapeutic potential of fecal microbiota transplantation (FMT) in treating severe pneumonia patients with concurrent pan-drug resistant infection.

Methods: A case report of a 95-year-old female patient with severe pneumonia, complicated by pan-resistant bacterial infections, is presented. The patient was diagnosed with severe pneumonia caused by COVID-19, along with co-infections of , , , , ESBL-producing pan-drug resistant and pan-resistant .

View Article and Find Full Text PDF

() is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2.

View Article and Find Full Text PDF

Introduction: The aim of this study is to examine the physiological effects of emodin on intestinal microorganisms and the liver in the BALb/c mice.

Method And Results: Following an 8-week administration of emodin at doses of 25, 50, and 100 mg/kg/day,pathological analyses revealed that emodin significantly reduced the colon length, induced colonic crypt inflammation,diminished the colonic mucus layer,and decreased the fluorescence intensity of colonic tight junction proteins ZO-1 and Occludin. Concurrently, 16S rDNA gene sequencing corroborated that emodin altered the diversity and composition of the intestinal microbiota by increasing the to ratio.

View Article and Find Full Text PDF

Breastfeeding represents a strong selective factor for shaping the infant gut microbiota. Besides providing nutritional requirements for the infant, human milk is a key source of oligosaccharides, human milk oligosaccharides (HMOs), and diverse microbes in early life. This study aimed to evaluate the influence of human milk microbiota and oligosaccharides on the composition of infant faecal microbiota at one, three, and nine months postpartum.

View Article and Find Full Text PDF

Cocoa-derived flavanols (CDF) may act as prebiotics. However, evidence is inconsistent, and the duration and dose of CDF intake needed to elicit any prebiotic effect are undefined. This randomized, double-blind, crossover study determined the effects of short-term, high-dose dietary supplementation with CDF versus matched placebo on gut microbiota composition in 8 healthy adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!