A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Zooplankton functional diversity as a bioindicator of freshwater ecosystem health across land use gradient. | LitMetric

Zooplankton functional diversity as a bioindicator of freshwater ecosystem health across land use gradient.

Sci Rep

Department of Water Management and Climatology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Lodzki 2, 10-719, Olsztyn, Poland.

Published: August 2024

Zooplankton are critical indicators of pressures impacting freshwater ecosystems. We analyzed the response of zooplankton communities across different sub-catchment types-headwaters, natural, urban, urban-agricultural, and agricultural-within the Łyna river-lake system in Northern Poland. Using taxonomic groups and functional traits (body size, feeding strategies), we applied Partial Least Squares Regression (PLS-R) to elucidate the relationships between environmental conditions, land use, and zooplankton metacommunity structure. Two-Way Cluster Analysis (TWCA) identified local subsets with characteristic patterns, while Indicator Species Analysis (ISA) determined area-specific taxa. The natural river zone exhibited significant habitat heterogeneity and feeding niches, whereas urban areas created functional homogenization of zooplankton, dominated by small, broad-diet microphages. Agricultural areas promoted diversity among large filter feeders (Crustacea), active suctors (Rotifera), and amoebae (Protozoa). However, intensified agricultural activities, substantially diminished the zooplankton population, biomass, taxonomic richness, and overall ecosystem functionality. The impact of land cover change is more pronounced at small-scale sub-catchments than at the catchment level as a whole. Therefore, assessing these impacts requires detailed spatial and temporal analysis at the sub-catchment level to identify the most affected areas. This study introduces a new sub-catchment-based perspective on ecosystem health assessment and underscores the zooplankton's role as robust indicators of ecological change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310481PMC
http://dx.doi.org/10.1038/s41598-024-69577-zDOI Listing

Publication Analysis

Top Keywords

ecosystem health
8
zooplankton
6
zooplankton functional
4
functional diversity
4
diversity bioindicator
4
bioindicator freshwater
4
freshwater ecosystem
4
health land
4
land gradient
4
gradient zooplankton
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!