Live vaccines are ideal for inducing immunity but suffer from the need to attenuate their pathogenicity or replication to preclude the possibility of escape. Unnatural amino acids (UAAs) provide a strategy to engineer stringent auxotrophies, yielding conditionally replication incompetent live bacteria with excellent safety profiles. Here, we engineer Pseudomonas aeruginosa to maintain auxotrophy for the UAA p-benzoyl-L-phenylalanine (BzF) through its incorporation into the essential protein DnaN. In vivo evolution using an Escherichia coli-based two-hybrid selection system enabled engineering of a mutant DnaN homodimeric interface completely dependent on a BzF-specific interaction. This engineered strain, Pa Vaccine, exhibits undetectable escape frequency (<10) and shows excellent safety in naïve mice. Animals vaccinated via intranasal or intraperitoneal routes are protected from lethal challenge with pathogenic P. aeruginosa PA14. These results establish UAA-auxotrophic bacteria as promising candidates for bacterial vaccine therapy and outline a platform for expanding this technology to diverse bacterial pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310302PMC
http://dx.doi.org/10.1038/s41467-024-50843-7DOI Listing

Publication Analysis

Top Keywords

unnatural amino
8
amino acid
4
acid dependent
4
dependent conditional
4
conditional pseudomonas
4
pseudomonas vaccine
4
vaccine prevents
4
prevents bacterial
4
bacterial infection
4
infection live
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!