Powerful associations that link drugs of abuse with cues in the drug-paired environment often serve as prepotent relapse triggers. Drug-associated contexts and cues activate ensembles of nucleus accumbens (NAc) neurons, including D1-class medium spiny neurons (MSNs) that typically promote, and D2-class MSNs that typically oppose, drug seeking. We found that in mice, cocaine conditioning upregulated transiently the activity-regulated transcription factor, Neuronal PAS Domain Protein 4 (NPAS4), in a small subset of NAc neurons. The NPAS4+ NAc ensemble was required for cocaine conditioned place preference. We also observed that NPAS4 functions within NAc D2-, but not D1-, MSNs to support cocaine-context associations and cue-induced cocaine, but not sucrose, seeking. Together, our data show that the NPAS4+ ensemble of NAc neurons is essential for cocaine-context associations in mice, and that NPAS4 itself functions in NAc D2-MSNs to support cocaine-context associations by suppressing drug-induced counteradaptations that oppose relapse-related behaviour.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310321PMC
http://dx.doi.org/10.1038/s41467-024-50099-1DOI Listing

Publication Analysis

Top Keywords

nac neurons
12
cocaine-context associations
12
nucleus accumbens
8
msns typically
8
npas4 functions
8
functions nac
8
support cocaine-context
8
nac
6
npas4
4
npas4 supports
4

Similar Publications

Cocaine-Induced Microglial Impairment and Its Rehabilitation by PLX-PAD Cell Therapy.

Int J Mol Sci

December 2024

Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.

Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving.

View Article and Find Full Text PDF

RhFGF21 protected PC12 cells against mitochondrial apoptosis triggered by HO via the AKT-mediated ROS signaling pathway.

Exp Cell Res

January 2025

Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address:

Article Synopsis
  • Oxidative stress is a key factor in neurodegenerative diseases by damaging neurons, making the reduction of reactive oxygen species (ROS) a potential treatment approach.
  • Fibroblast growth factor 21 (FGF21) has shown protective effects on neuronal cells, as it can enhance cell viability by reducing mitochondrial apoptosis and lowering ROS levels.
  • The research indicates that treatment with rhFGF21 increases the expression of p-AKT, which plays a critical role in mediating cell survival against oxidative stress, suggesting that FGF21's protective effects are linked to the AKT and ROS signaling pathway.
View Article and Find Full Text PDF

Hypoactive sexual desire disorder (HSDD) is the most reported sexual dysfunction among premenopausal women worldwide. Bremelanotide, trade name Vyleesi, has been approved by the United States Food and Drug Administration to treat HSDD. However, despite approval, very little is known about its neurobiological mechanism of action.

View Article and Find Full Text PDF

Postpartum depression (PPD) affects up to 20% of new mothers and has adverse consequences for the well-being of both mother and child. Exposure to stress during pregnancy as well as dysregulation in the mesolimbic dopamine (DA) reward system and its upstream modulator oxytocin (OT) have been independently linked to PPD. However, no studies have directly examined DA or OT signaling in the postpartum brain after gestational stress.

View Article and Find Full Text PDF

Sexually dimorphic dopaminergic circuits determine sex preference.

Science

January 2025

Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTA) neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!