Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The transfer of an oxygen atom from carbon dioxide (CO) to a transition metal cation in the gas phase offers atomic level insights into single-atom catalysis for CO activation. Given that these reactions often involve open-shell transition metals, they may proceed through intersystem crossing between different spin manifolds. However, a definitive understanding of such spin-forbidden reaction requires dynamical calculations on multiple global potential energy surfaces (PESs) coupled by spin-orbit couplings. In this work, we report global PESs and spin-orbit couplings for three low-lying spin (quintet, triplet, and singlet) states for the reaction between the niobium cation (Nb) and CO, which are used to investigate the nonadiabatic reaction dynamics and kinetics. Comparison with experimental data of kinetics and collision dynamics shows satisfactory agreement. This reaction is found to be very similar to that between Ta + CO. Specifically, our theoretical findings suggest that the rate-limiting step in this reaction is intersystem crossing, rather than potential barriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.4c04067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!