Recent developments in (bio)ethanol conversion to fuels and chemicals over heterogeneous catalysts.

Bioresour Technol

PetroSA-Synthetic Fuels Innovation Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Bellville 7535, South Africa. Electronic address:

Published: October 2024

Bioethanol is one of the most important bio-resources produced from biomass fermentation and is an environmentally friendly alternative to fossil-based fuels as it is regarded as renewable and clean. Bioethanol and its derivatives are used as feedstocks in petrochemical processes as well as fuel and fuel additives in motor vehicles to compensate for the depletion of fossil fuels. This review chronicles the recent developments in the catalytic conversion of ethanol to diethyl ether, ethylene, propylene, long-chain hydrocarbons, and other important products. Various heterogeneous catalysts, such as zeolites, metal oxides, heteropolyacids, mesoporous materials, and metal-organic frameworks, have been used in the ethanol conversion processes and are discussed extensively. The significance of various reaction parameters such as pressure, temperature, water content in the ethanol feed, and the effect of catalyst modification based on various kinds of literature are critically evaluated. Further, coke formation and coke product analysis using various analytical and spectroscopic techniques during the ethanol conversion are briefly discussed. The review concludes by providing insights into possible research paths pertaining to catalyst design aimed at enhancing the catalytic conversion of (bio)ethanol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131230DOI Listing

Publication Analysis

Top Keywords

heterogeneous catalysts
8
catalytic conversion
8
ethanol conversion
8
conversion
5
developments bioethanol
4
bioethanol conversion
4
conversion fuels
4
fuels chemicals
4
chemicals heterogeneous
4
catalysts bioethanol
4

Similar Publications

Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.

View Article and Find Full Text PDF

The utilization of the homogeneous ()-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix).

View Article and Find Full Text PDF

Metal-free materials have been proved to be promising replacements of traditional metal-based catalysts for advanced oxidation reactions. Carbon nitride was found to be able to activate HO and generate hydroxyl radicals (•OH). Nevertheless, the performance of carbon nitride is highly dependent on an external light source.

View Article and Find Full Text PDF

Palladium nanoparticles were supported on L-H-functionalized KIT-6 (KIT-6@L-H-Pd) and evaluated using various characterization techniques such as TGA, FT-IR, SEM, XRD, EDS, and BET. KIT-6@L-H-Pd showed excellent catalytic performance as a recyclable nanocatalyst for the oxidation of sulfides to sulfoxides and the amination of aryl halides. This approach offers multiple benefits, including the use of readily available and cost-effective materials, a straightforward procedure, short reaction durations, high yields, and a catalyst that is easy to separate and reuse.

View Article and Find Full Text PDF

Ultrathin Palladium-loaded Cuprous oxide stabilises Copper(I) to facilitate electrochemical carbon dioxide reduction reaction.

J Colloid Interface Sci

January 2025

Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Cuprous oxide (CuO) exhibit significant potential for catalytic activity in the electrochemical carbon dioxide reduction reaction (CORR). However, the rapid reduction of Copper(I) (Cu) to metallic Copper (Cu) leads to catalyst deactivation, significantly impacting product selectivity and stability. This study aims to stabilize the Cu valence state at a metal-CuO heterogeneous interface through interfacial engineering, ultimately enhancing the electrochemical CO reduction performance of CuO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!