The aim was to determine whether indirect exposure to pesticides, specifically a copper-based fungicide, induces alterations in oxidative stress and subclinical and early kidney biomarkers in male farmers tasked with olives harvesting. Furthermore, we tested whether sex influences the susceptibility to pesticide-induced renal damage by comparing the results of this study with those obtained previously. The study focused on olive farmers (n = 41) indirectly exposed to copper-based fungicides in Estepa (Sevilla, Spain), comparing them with a control group (n = 32). Blood samples were analyzed for metal concentrations (Cu, Mn, Se, and Zn), lipid peroxidation (MDA), protein oxidation (carbonyl groups), and antioxidant enzyme activities (SOD and CAT) while urine samples were assessed for biomarkers of early kidney damage (NGAL, KIM-1, transferrin, IGFBP7, TIMP-2). Although no significant, a tendency to increase lipid and protein oxidation was observed, together with the activity of antioxidant enzymes SOD and CAT, and a decrease in total antioxidants. Moreover, an increase in urinary NGAL and IGFBP7 among pesticide-exposed farmers suggests potential underdiagnosis of kidney damage. Farmers exhibit a subtle tendency to oxidative stress compared to control, while metal levels are significantly lower in farmers, suggesting potential compensatory responses. Furthermore, biomarkers for early kidney damage are elevated, emphasizing their vulnerability in both sexes. These findings highlight the need for investigations of renal health in pesticide-exposed farmers for preventative measures and regular health monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175180 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!