Protists and fungi: Reinforcing urban soil ecological functions against flash droughts.

Sci Total Environ

Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China. Electronic address:

Published: November 2024

Rising instances of flash droughts are contributing to notable variability in soil moisture across terrestrial ecosystems. These phenomena challenge urban ecosystem services, yet the reaction of soil ecological functions (SEFs) to such events is poorly understood. This study investigates the responses of SEFs (about nutrient metabolism capacity and potential) and the microbiome under two specific scenarios: a flooding-drought sequence and a direct drought condition. Using quantitative microbial element cycling analysis, high-throughput sequencing, and enzyme activity measurements, we found that unlike in forests, the microbial composition in urban soils remained unchanged during flash drought conditions. However, SEFs were affected in both settings. Correlation analysis and Mantel test showed that forest soils exhibited more complex interactions among soil moisture, properties, and microbial communities. Positive linear correlation revealed that bacteria were the sole drivers of SEFs. Interestingly, while multi-threshold results suggested bacterial α diversity impeded the maximization of SEFs in urban soils, fungi and protists had a beneficial impact. Cross-domain network of urban soils had higher number of nodes and edges, but lower average degree and robustness than forest soils. Mantel test revealed that fungi and protist had significant correlations with bacterial composition in forest soils, but not in urban soils. In the urban network, the degree and eigenvector centrality of bacterial, fungal and protistan ASVs were significantly lower compared to those in the forest. These results suggest that the lower robustness of the microbial network in urban soils is attributed to limited interactions among fungi, consumer protists, and bacteria, contributing to the failure of microbial-driven ecological functions. Overall, our findings emphasize the critical role of fungi and protists in shielding urban soils from drought-induced disturbances and in enhancing the resistance of urban ecological functions amidst environmental changes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175274DOI Listing

Publication Analysis

Top Keywords

urban soils
24
ecological functions
16
forest soils
12
urban
10
soils
9
soil ecological
8
flash droughts
8
soil moisture
8
mantel test
8
fungi protists
8

Similar Publications

Ecosystem services arise from and are shaped by interactions within social-ecological systems. While network approaches hold promise for conceptualizing and managing ecosystem services, their practical application remains underexplored. This study introduces a novel application of the partial correlation network approach to ecosystem service research, using China's Loess Plateau as a case study to analyze ecosystem services and social-ecological factors within a network framework.

View Article and Find Full Text PDF

Heavy metal(loid)s accumulation and human health risk assessment in wheat after long-term application of various urban and rural organic fertilizers.

Sci Total Environ

January 2025

Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs.

View Article and Find Full Text PDF

Increasing pesticide diversity impairs soil microbial functions.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.

View Article and Find Full Text PDF

While vegetable uptake of traditional metal contaminants is a well-studied pathway to human exposure and risk, a paucity of information exists on the uptake of emerging metal contaminants. This study evaluated the uptake of the Technology-critical elements (TCEs) gallium (Ga), germanium (Ge), niobium (Nb), tantalum (Ta), thallium (Tl), and rare earth elements (REEs) into lettuce cultivated in 21 European urban soils. For comparison, the uptake of cadmium (Cd) was also analysed.

View Article and Find Full Text PDF

Identification of driving factors for heavy metals and polycyclic aromatic hydrocarbons pollution in agricultural soils using interpretable machine learning.

Sci Total Environ

January 2025

Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone and Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangzhou 510045, China.

This study integrated data-driven interpretable machine learning (ML) with statistical methods, complemented by knowledge-driven discrimination diagrams, to identify the primary driving factors of heavy metal (HM) and polycyclic aromatic hydrocarbon (PAH) contamination in agricultural soils influenced by complex sources in a rapidly industrializing region of a megacity in southern China. First, the statistical characteristics of the concentrations of HMs and PAHs, and their correlations with the environmental covariates were explored. Three ML models and a statistical model comprising multiple environmental variable predictors were developed and assessed to predict the concentration of HMs in the agricultural soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!