The deposition of fats, oil, and grease (FOG) in sewers reduces conveyance capacity and leads to sanitary sewer overflows. The major contributing factor lies in the indiscriminate disposal of used cooking oil (UCO) via kitchen sinks. While prior investigations have mostly highlighted the significance of Ca from concrete biocorrosion, the influence of common metal ions (e.g., Mg, Na, K) found in kitchen wastewater on FOG deposition has received limited attention in the existing literature. This study aimed to elucidate the roles of Ca, Mg, Na and K in FOG deposition in sewers and examine the influence of metal ions, fat/oil sources, and free fatty acids (FFAs) on the physicochemical and rheological properties of FOG deposits. To examine FOG deposit formation, synthetic wastewater containing 0.1 g/L of each metal ion was mixed with 40 mL of fat/oil and agitated for 8 h. Following FOG deposition, three distinct phases were observed: unreacted oil, FOG deposit and wastewater. The composition of these phases was influenced by the composition of metal ions and FFA in the wastewater. Mg produced the highest amount of FOG of 242.5 ± 10.6 mL compared to Ca (72.5 ± 3.5 mL) when each FFAs content in UCO was increased by 10 mg/mL. Molar concentration, valency and the solubility of metal ion sources were identified to influence the formation of FOG deposits via saponification and aggregation reaction. Furthermore, Fourier-Transform Infrared spectroscopy indicated that the FOG deposits in this study were similar to those collected from the field. This study showed that the use of Mg(OH) as a biocorrosion control measure would increase FOG deposition and highlights the need for a comprehensive understanding of its roles in real sewage systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143033DOI Listing

Publication Analysis

Top Keywords

fog deposition
16
metal ions
12
fog deposits
12
fog
11
oil grease
8
fog deposit
8
metal ion
8
deposition
5
metal
5
uncovering impact
4

Similar Publications

Scalable pilot production of highly efficient 5-ply respiratory masks enhanced by bacterial cellulose nanofibers.

Int J Biol Macromol

November 2024

Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences (FEPS), University of Surrey Guildford, GU2 7XH Surrey, United Kingdom.

This study presents the pilot-scale production of highly efficient real respiratory masks enhanced by bacterial cellulose nanofibers (BCNFs). The BCNFs suspension was deposited onto tissue paper substrates using fog spray technique with three BCNFs grammage levels of 0.5, 1, and 2 g/m, followed by freeze drying.

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19 is linked to serious thrombotic events and neurological symptoms that can persist in long COVID patients, but the mechanisms behind these complications are not well understood and treatment options are limited.
  • *Fibrinogen, a key component of blood clots, is found in high amounts in the lungs and brains of COVID-19 patients, where it correlates with the severity of the disease and can predict cognitive issues afterward.
  • *Research shows that fibrin interacts with the SARS-CoV-2 spike protein, causing inflammatory blood clots that contribute to complications like inflammation and nerve damage, suggesting that therapies targeting fibrin may be beneficial for treating both acute and long COVID cases.*
View Article and Find Full Text PDF

This study examines the impact of canopy density, side wind speed, nozzle tilt angle, and droplet size on droplet penetration during plant protection spraying operations. Experiments conducted in citrus orchards evaluated how side wind speed and nozzle tilt angle influence droplet penetration across various canopy densities. A Phase Doppler Analyzer (PDA) was used to assess droplet size variations under different nozzle tilt angles and side wind speeds, yielding a multiple linear regression equation (R = 0.

View Article and Find Full Text PDF

The deposition of fats, oil, and grease (FOG) in sewers reduces conveyance capacity and leads to sanitary sewer overflows. The major contributing factor lies in the indiscriminate disposal of used cooking oil (UCO) via kitchen sinks. While prior investigations have mostly highlighted the significance of Ca from concrete biocorrosion, the influence of common metal ions (e.

View Article and Find Full Text PDF

Objectives: We aimed to identify independent factors for intraoperative endoscopic lens cloudiness during gastric and colorectal endoscopic submucosal dissections, investigate the effectiveness of Cleastay, an endoscope anti-fog solution, and examine factors associated with severe submucosal fat deposition.

Methods: A total of 220 patients who underwent gastric or colorectal endoscopic submucosal dissections in two institutions between January 2022 and October 2023 were included. Significant factors related to cloudiness were determined using univariate and multivariate analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!