A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial heterogeneity of soil respiration after prescribed burning in Pinus koraiensis forest in China. | LitMetric

Spatial heterogeneity of soil respiration after prescribed burning in Pinus koraiensis forest in China.

J Environ Manage

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, 150040, China. Electronic address:

Published: September 2024

Soil respiration (RS) is crucial for releasing carbon dioxide (CO) from terrestrial ecosystems to atmosphere. Prescribed burning (a common forest management tool), along with its important by-product pyrogenic carbon (PyC), can influence the carbon cycle of forest soil. However, few studies explore RS and PyC spatial correlation after prescribed burning. In this study, we investigated the spatial pattern of RS and its influencing factors by conducting prescribed burnings in a temperate artificial Pinus koraiensis forest. RS was measured 1 day (1 d) pre-prescribed burning, 1 d, 1 year (1 yr) and two years (2 yr) after prescribed burning. Significant decrease in RS were observed 1-2 yr After burning (reductions of 65.2% and 41.7% respectively). The spatial autocorrelation range of RS decreased pre-burning (2.72m), then increased post-burning (1 d: 2.44m; 1 yr: 40.14m; 2 yr: 9.8m), indicating a more homogeneous distribution of patch reduction. Pyrogenic carbon (PyC) in the soil gradually decreased in the short term after burning with reductions of 19%, 52%, and 49% (1d., 1 yr And 2 yr After the fire, respectively). However, PyC and RS exhibited a strong spatial positive correlation from 1 d.- 1 yr post-burning. The spatial regression model of dissolved organic carbon (DOC) on RS demonstrated significant positive spatial correlation in all measurements (pre- and post-burning). Microbial carbon to soil nitrogen ratio (MCN) notably influenced RS pre-burning and 1-2 yr post-burning. RS also showed significant spatial correlation in cross-variance with NH-N and NO-N post-burning. The renewal of the PyC positively influenced RS, subsequently affecting its spatial distribution in 1d.- 1yr. Introducing PyC into RS studies helps enhances understanding of prescribed fire effects on forest soil carbon (C) pools, and provides valuable information regarding regional or ecosystem C cycling, facilitating a more accurate prediction of post-burning changes in forest soil C pools.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122126DOI Listing

Publication Analysis

Top Keywords

prescribed burning
16
forest soil
12
spatial correlation
12
spatial
9
soil respiration
8
pinus koraiensis
8
koraiensis forest
8
pyrogenic carbon
8
carbon pyc
8
burning reductions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!