A novel intervention of molecular hydrogen on the unbalance of the gut microbiome in opioid addiction: Experimental and human studies.

Biomed Pharmacother

College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China. Electronic address:

Published: September 2024

The gut-brain axis mediates the interaction pathway between microbiota and opioid addiction. In recent years, many studies have shown that molecular hydrogen has therapeutic and preventive effects on various diseases. This study aimed to investigate whether molecular hydrogen could serve as pharmacological intervention agent to reduce risks of reinstatement of opioid seeking and explore the mechanism of gut microbiota base on animal experiments and human studies. Morphine-induced conditioned place preference (CPP) was constructed to establish acquisition, extinction, and reinstatement stage, and the potential impact of H on the behaviors related to morphine-induced drug extinction was determined using both free accessible and confined CPP extinction paradigms. The effects of morphine on microbial diversity and composition of microbiota, as well as the subsequent changes after H intervention, were assessed using 16 S rRNA gene sequencing. Short-Chain Fatty Acids (SCFAs) in mice serum were detected by gas chromatography-mass spectrometry (GC-MS). Meanwhile, we also conducted molecular hydrogen intervention and gut microbiota testing in opioid-addicted individuals. Our results revealed that molecular hydrogen could enhance the extinction of morphine-related behavior, reducing morphine reinstatement. Gut microbes may be a potential mechanism behind the therapeutic effects of molecular hydrogen on morphine addiction. Additionally, molecular hydrogen improved symptoms of depression and anxiety, as well as gut microbial features, in individuals with opioid addiction. This study supports molecular hydrogen as a novel and effective intervention for morphine-induced addiction and reveals the mechanism of gut microbiota.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117273DOI Listing

Publication Analysis

Top Keywords

molecular hydrogen
32
opioid addiction
12
gut microbiota
12
molecular
8
hydrogen
8
human studies
8
mechanism gut
8
gut
6
addiction
5
microbiota
5

Similar Publications

To efficiently capture, activate, and transform small molecules, metalloenzymes have evolved to integrate a well-organized pocket around the active metal center. Within this cavity, second coordination sphere functionalities are precisely positioned to optimize the rate, selectivity, and energy cost of catalytic reactions. Inspired by this strategy, an artificial distal pocket defined by a preorganized 3D strap is introduced on an iron-porphyrin catalyst (sc-Fe) for the CO-to-CO electrocatalytic reduction.

View Article and Find Full Text PDF

Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.

View Article and Find Full Text PDF

The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent myoglobin (BsMb) and sperm whale myoglobin (SwMb).

View Article and Find Full Text PDF

Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.

View Article and Find Full Text PDF

Biomimetic bioreactor for potentiated uricase replacement therapy in hyperuricemia and gout.

Front Bioeng Biotechnol

January 2025

Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China.

Introduction: Uricase replacement therapy is a promising approach for managing hyperuricemia and gout but is hindered by challenges such as short blood circulation time, reduced catalytic activity, and excessive hydrogen peroxide (HO) production. These limitations necessitate innovative strategies to enhance therapeutic efficacy and safety.

Methods: We designed and synthesized RBC@SeMSN@Uri, a red blood cell-coated biomimetic self-cascade bioreactor, which encapsulates uricase (Uri) and a selenium-based nano-scavenger (SeMSN) within RBC membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!