A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glucosamine sulfate-loaded nanofiber reinforced carboxymethyl chitosan sponge for articular cartilage restoration. | LitMetric

Glucosamine sulfate-loaded nanofiber reinforced carboxymethyl chitosan sponge for articular cartilage restoration.

J Colloid Interface Sci

Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China. Electronic address:

Published: January 2025

Cartilage is severely limited in self-repair after damage, and tissue engineering scaffold transplantation is considered the most promising strategy for cartilage regeneration. However, scaffolds without cells and growth factors, which can effectively avoid long cell culture times, high risk of infection, and susceptibility to contamination, remain scarce. Hence, we developed a cell- and growth factor-dual free hierarchically structured nanofibrous sponge to mimic the extracellular matrix, in which the encapsulated core-shell nanofibers served both as mechanical supports and as long-lasting carriers for bioactive biomass molecules (glucosamine sulfate). Under the protection of the nanofibers in this designed sponge, glucosamine sulfate could be released continuously for at least 30 days, which significantly accelerated the repair of cartilage tissue in a rat cartilage defect model. Moreover, the nanofibrous sponge based on carboxymethyl chitosan as the framework could effectively fill irregular cartilage defects, adapt to the dynamic changes during cartilage movement, and maintain almost 100 % elasticity even after multiple compression cycles. This strategy, which combines fiber freeze-shaping technology with a controlled-release method for encapsulating bioactivity, allows for the assembly of porous bionic scaffolds with hierarchical nanofiber structure, providing a novel and safe approach to tissue repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.07.207DOI Listing

Publication Analysis

Top Keywords

carboxymethyl chitosan
8
nanofibrous sponge
8
glucosamine sulfate
8
cartilage
7
glucosamine sulfate-loaded
4
sulfate-loaded nanofiber
4
nanofiber reinforced
4
reinforced carboxymethyl
4
sponge
4
chitosan sponge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!