The utilization of digital statistical processes in images and videos can effectively tackle numerous challenges encountered in optical sensors. This research endeavors to overcome the limitations inherent in traditional focus models, particularly their inadequate accuracy. It aims to bolster the precision of real-time perception and dynamic control by employing enhanced data fusion methodologies. The ultimate objective is to facilitate information services that enable seamless interaction and profound integration between computational and physical processes within an open environment. To achieve this, an enhanced sum-modulus difference (SMD) evaluation function has been proposed. This innovation is founded on the concept of threshold value evaluation, aimed at rectifying the accuracy shortcomings of traditional focusing models. Through the computation of each gray value after threshold segmentation, the method identifies the most suitable threshold for image segmentation. This identified threshold is then applied to the focus search strategy employing the radial basis function (RBF) algorithm. Furthermore, an intelligent focusing system has been developed on the Zynq development platform, encompassing both hardware design and software program development. The test results affirm that the focusing model based on the improved SMD evaluation function rapidly identifies the peak point of the gray variance curve, ascertains the optimal focal plane position, and notably enhances the sensitivity of the focusing model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309426 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307319 | PLOS |
United European Gastroenterol J
January 2025
"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.
View Article and Find Full Text PDFJMIR Ment Health
January 2025
The Samueli Initiative for Responsible AI in Medicine, Tel Aviv University, Tel Aviv, Israel.
Generative artificial intelligence (GenAI) shows potential for personalized care, psychoeducation, and even crisis prediction in mental health, yet responsible use requires ethical consideration and deliberation and perhaps even governance. This is the first published theme issue focused on responsible GenAI in mental health. It brings together evidence and insights on GenAI's capabilities, such as emotion recognition, therapy-session summarization, and risk assessment, while highlighting the sensitive nature of mental health data and the need for rigorous validation.
View Article and Find Full Text PDFInt J Med Inform
January 2025
School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:
Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.
View Article and Find Full Text PDFBMC Nurs
January 2025
Nursing Department, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
Background: Artificial Intelligence (AI) is increasingly applied in healthcare to boost productivity, reduce administrative workloads, and improve patient outcomes. In nursing, AI offers both opportunities and challenges. This study explores nurses' perspectives on implementing AI in nursing practice within the context of Jordan, focusing on the perceived benefits and concerns related to its integration.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!