Exsolution has emerged as an outstanding route for producing oxide-supported metal nanoparticles. For O-perovskite oxides, various late transition-metal cations can be substituted into the lattice under oxidizing conditions and exsolved as metal nanoparticles after reduction. A consistent and comprehensive description of the point-defect thermodynamics and kinetics of this phenomenon is lacking, however. Herein, supported by hybrid density-functional-theory calculations, we propose a single model that explains diverse experimental observations, such as why substituent transition-metal cations (but not host cations) exsolve from perovskite oxides upon reduction; why different substituent transition-metal cations exsolve under different conditions; why the metal nanoparticles are embedded in the surface; why exsolution occurs surprisingly rapidly at relatively low temperatures; and why the reincorporation of exsolved species involves far longer times and much higher temperatures. Our model's foundation is that the substituent transition-metal cations are reduced to neutral species the perovskite lattice as the Fermi level is shifted upward within the bandgap upon sample reduction. The calculations also indicate unconventional influences of oxygen vacancies and -site vacancies. Our model thus provides a fundamental basis for improving existing, and creating new, exsolution-generated catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345767 | PMC |
http://dx.doi.org/10.1021/jacs.4c03412 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India.
The introduction of heterovalent metal ion doping in the lead (Pb) halide perovskites presents a novel opportunity to manipulate the electronic and ionic properties by introducing dopant charges and increasing the carrier concentration in single crystals. While previous studies have reported on the use of bismuth (Bi) doping in methylammonium lead tribromide (MAPbBr) to adjust the optical properties, the comprehensive impact of Bi doping on the structural and electronic properties of MAPbBr single crystals remains unexplored. This research, therefore, delves into the anomalous behavior of the structural, optical, and electrical properties of pristine and doped MAPbBr single crystals through a combination of experimental and computational studies.
View Article and Find Full Text PDFHumic substances, such as Fulvic acid (FA) and humic acid (HA), are widely used for the remediation of heavy metal-contaminated soils due to their ability to enhance metal mobility and facilitate plant uptake. In this study, we conducted a pot experiment with alfalfa to investigate the effects of FA and HA amendments on the mobility of molybdenum (Mo) in the soil, its uptake by alfalfa plants, and subsequent changes in the microbial community. The results demonstrated that both FA and HA influence Mo accumulation in the soil and plants.
View Article and Find Full Text PDFNat Commun
December 2024
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic. Electronic address:
Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!