As an important sustainable method for chemical synthesis, organic electrosynthesis experienced a renaissance in recent years for its excellent atom economy. Although microchannel reactors have been proposed to advanced electrosynthesis devices to obtain low energy cost and high reaction performance, the complex multiphasic flow in the electrochemical microchannels are very less reported and the effects of flow condition on the electrosynthesis reaction are less reported. Taking the electrosynthesis of tetraethyl thiuram disulfide (TETD) as a typical case, we developed a visualized electrochemical microchannel reactor equipped with fluorine-doped tin oxide (FTO) loaded glass electrode to investigate the gas-liquid-liquid triple phase flow pattern and the main factors influenced the response current at certain applied cell voltage. The gas-liquid-liquid hybrid flow with low gas hold-up and high liquid flow rate was found crucial for preventing coverage of TETD on the electrode, which provided 23.1 % low current attenuation ratio at 3.0 V cell voltage. The research not only exhibited the complex evolution mechanism of the response current, but also showed the importance of flow condition control for balancing the work efficiency and energy consumption of electrosynthesis process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202401368 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Soft robotics has undergone considerable progress driven by materials that can effectively transduce external stimuli into mechanical actuation. Here, we report the development of a photothermal-responsive hydrogel actuator with shape memory capabilities inspired by the adaptive locomotion of sea cucumbers. This actuator is based on sea cucumber peptides (SCP) and a liquid metal (LM) hydrogel network that is responsive to near-infrared (NIR) light.
View Article and Find Full Text PDFBiomolecular condensates formed via phase separation of proteins and nucleic acids are crucial for the spatiotemporal regulation of a diverse array of essential cellular functions and the maintenance of cellular homeostasis. However, aberrant liquid-to-solid phase transitions of such condensates are associated with several fatal human diseases. Such dynamic membraneless compartments can contain a range of molecular chaperones that can regulate the phase behavior of proteins involved in the formation of these biological condensates.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFRadiol Med
January 2025
Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
Purpose: Pre-procedural imaging is critical for transcatheter mitral valve repair planning in patients with mitral valve disease. As differences among various measurement techniques for valve evaluation are still poorly understood, we sought to assess the intra- and interobserver agreement of complex measurements derived from a prototype mitral evaluation tool (Siemens) and a commercially available tool (CVI42) using both saddle- and D-shaped mitral annulus techniques.
Materials And Methods: Multiphasic cardiac computed tomography angiography data were loaded into each software.
Langmuir
January 2025
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023, P. R. China.
Interfacial tension () between CO and brine depends on chemical components in multiphase systems, intricately evolving with a change in temperature. In this study, we developed a convolutional neural network with a multibranch structure (MBCNN), which, in combination with a compiled data set containing measurement data of 1716 samples from 13 available literature sources at wide temperature and pressure ranges (273.15-473.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!