Supramolecular Complex Surfactants and Structured Liquids Enabled by Cation-π and Charge-Transfer Interactions.

Langmuir

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Published: August 2024

Cation-π and charge-transfer (CT) interactions are pervasive with significant implications in the fields of chemistry, materials science, and biology. However, much less is known about the construction of interfacial assemblies based on the two interactions. Here, by combining cation-π and CT interactions between an acceptor molecule, dicationic naphthalenediimide, and an aromatic donor, pyrene-terminated poly-l-lactic acid, we report the generation of supramolecular complex surfactants (SCSs) in situ at the toluene-water interface. The utilization of SCSs as building blocks enables the fabrication of interfacial assemblies including 2D films, emulsions, and structured liquids. By modification of the redox state of the acceptor molecules under chemical stimulus, the association/assembly and dissociation/disassembly of SCSs can be precisely regulated, imparting intriguing redox-responsive properties to the resulting assemblies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02172DOI Listing

Publication Analysis

Top Keywords

supramolecular complex
8
complex surfactants
8
structured liquids
8
cation-π charge-transfer
8
charge-transfer interactions
8
interfacial assemblies
8
surfactants structured
4
liquids enabled
4
enabled cation-π
4
interactions
4

Similar Publications

Chemically Triggered Reactive Coacervates Show Life-Like Budding and Membrane Formation.

J Am Chem Soc

January 2025

Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló de la Plana 12071, Spain.

Phase-separated coacervates can enhance reaction kinetics and guide multilevel self-assembly, mimicking early cellular evolution. In this work, we introduce "reactive" complex coacervates that undergo chemically triggered self-immolative transformations, directing the self-assembly of the reaction products within their matrix. These self-assemblies then evolve to show life-like properties such as budding and membrane formation.

View Article and Find Full Text PDF

This study investigates the nature and interplay of noncovalent interactions (NCIs)─tetrel bonds (TB), hydrogen bonds (HB), and halogen bonds (XB)─in molecular assemblies formed between trifluorogermyl hypochlorite (FGeOCl) and hydrogen cyanide (HCN). Using a combination of high-level computational methods, we explored the geometric, energetic, and electronic properties of dimers, trimers, and tetramers formed in different molar ratios of interacting reagents. Various analyses reveal a significant cooperativity between TB and HB, which mutually reinforce each other, while XB interactions are diminished in the presence of TB and HB.

View Article and Find Full Text PDF

The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.

View Article and Find Full Text PDF

Electron donor-acceptor complexes are commonly employed to facilitate photoinduced radical-mediated organic reactions. However, achieving these photochemical processes with catalytic amounts of donors or acceptors can be challenging, especially when aiming to reduce catalyst loadings. Herein, we have unveiled a framework-based heterogenization approach that significantly enhances the photoredox activity of perylene diimide species in radical addition reactions with alkyl silicates by promoting faster and more efficient electron donor-acceptor complex formation.

View Article and Find Full Text PDF

The self-assembly of fibrin is a vital process in blood clotting, primarily facilitated by the interactions between knobs "A" and "B" in the central E region of one molecule and the corresponding holes "a" and "b" in the peripheral D regions of two other fibrin molecules. However, the precise function of the interactions between knob "B" and hole "b" during fibrin polymerization remains a subject of ongoing debate. The present study focuses on investigating intermolecular interactions between knob "B" and hole "b".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!