Purpose: Compare the use of optic disc and macular optical coherence tomography measurements to predict glaucomatous visual field (VF) worsening.

Methods: Machine learning and statistical models were trained on 924 eyes (924 patients) with circumpapillary retinal nerve fiber layer (cp-RNFL) or ganglion cell inner plexiform layer (GC-IPL) thickness measurements. The probability of 24-2 VF worsening was predicted using both trend-based and event-based progression definitions of VF worsening. Additionally, the cp-RNFL and GC-IPL predictions were combined to produce a combined prediction. A held-out test set of 617 eyes was used to calculate the area under the curve (AUC) to compare cp-RNFL, GC-IPL, and combined predictions.

Results: The AUCs for cp-RNFL, GC-IPL, and combined predictions with the statistical and machine learning models were 0.72, 0.69, 0.73, and 0.78, 0.75, 0.81, respectively, when using trend-based analysis as ground truth. The differences in performance between the cp-RNFL, GC-IPL, and combined predictions were not statistically significant. AUCs were highest in glaucoma suspects using cp-RNFL predictions and highest in moderate/advanced glaucoma using GC-IPL predictions. The AUCs for the statistical and machine learning models were 0.63, 0.68, 0.69, and 0.72, 0.69, 0.73, respectively, when using event-based analysis. AUCs decreased with increasing disease severity for all predictions.

Conclusions: cp-RNFL and GC-IPL similarly predicted VF worsening overall, but cp-RNFL performed best in early glaucoma stages and GC-IPL in later stages. Combining both did not enhance detection significantly.

Translational Relevance: cp-RNFL best predicted trend-based 24-2 VF progression in early-stage disease, while GC-IPL best predicted progression in late-stage disease. Combining both features led to minimal improvement in predicting progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316451PMC
http://dx.doi.org/10.1167/tvst.13.8.12DOI Listing

Publication Analysis

Top Keywords

cp-rnfl gc-ipl
20
machine learning
12
gc-ipl combined
12
cp-rnfl
9
gc-ipl
9
visual field
8
macular optical
8
optical coherence
8
coherence tomography
8
thickness measurements
8

Similar Publications

Purpose: Compare the use of optic disc and macular optical coherence tomography measurements to predict glaucomatous visual field (VF) worsening.

Methods: Machine learning and statistical models were trained on 924 eyes (924 patients) with circumpapillary retinal nerve fiber layer (cp-RNFL) or ganglion cell inner plexiform layer (GC-IPL) thickness measurements. The probability of 24-2 VF worsening was predicted using both trend-based and event-based progression definitions of VF worsening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!