Quantifying Protein Dynamics by Kymograph Analysis.

Methods Mol Biol

Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, China.

Published: August 2024

Time-lapse imaging of the subcellular localization and dynamic behavior of proteins is critical to understand their biological functions in cells. With the advent of various methodologies and computational tools, the precise tracking and quantification of protein spatiotemporal dynamics have become feasible. Kymograph analysis, in particular, has been extensively adopted for the quantitative assessment of proteins, vesicles, and organelle movements. However, conventional kymograph analysis, which is based on a single linear trajectory, may not comprehensively capture the complexity of proteins that alter their course during intracellular transport and activity. In this chapter, we introduced an advanced protocol for whole-cell kymograph analysis that allows for three-dimensional (3D) tracking of protein dynamics. This method was validated through the analysis of tip-focused endocytosis and exocytosis processes in growing tobacco pollen tubes by employing both the advanced whole-cell and classical kymograph methods. In addition, we enhanced this method by integrating pseudo-colored kymographs that enables the direct visualization of changes in protein fluorescence intensity with fluorescence recovery after photobleaching to advance our understanding of protein localization and dynamics. This comprehensive method offers a novel insight into the intricate dynamics of protein activity within the cellular context.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4059-3_12DOI Listing

Publication Analysis

Top Keywords

kymograph analysis
16
protein dynamics
8
dynamics
5
kymograph
5
analysis
5
protein
5
quantifying protein
4
dynamics kymograph
4
analysis time-lapse
4
time-lapse imaging
4

Similar Publications

Quantitative Analysis of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Stabilization in a Neural Model of Alzheimer's Disease (AD).

J Vis Exp

January 2025

Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;

A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.

View Article and Find Full Text PDF

Intraflagellar transport 25 (IFT25) is a component of the IFT-B complex. In mice, even though this IFT component is not required for cilia formation in somatic cells, it is essential for sperm formation. However, the intracellular localization of this protein in male germ cells is not known given no reliable antibodies are available for histologic studies, and the dynamic trafficking in the developing sperm flagella is not clear.

View Article and Find Full Text PDF

Amoeboid cell motility is fundamental for a multitude of biological processes such as embryogenesis, immune responses, wound healing, and cancer metastasis. It is characterized by specific cell shape changes: the extension and retraction of membrane protrusions, known as pseudopodia. A common approach to investigate the mechanisms underlying this type of cell motility is to study phenotypic differences in the locomotion of mutant cell lines.

View Article and Find Full Text PDF

Measuring Retrograde Actin Flow in Neuronal Growth Cones.

Methods Mol Biol

August 2024

Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.

Actin flow refers to the motion of the F-actin cytoskeleton and has been observed in many different cell types, especially in motile cells including neuronal growth cones. The direction of the actin flow is generally retrograde from the periphery toward the center of the cell. Actin flow can be harnessed for forward movement of the cell through substrate-cytoskeletal coupling; thus, a key function of actin flow is in cell locomotion.

View Article and Find Full Text PDF

Quantifying Protein Dynamics by Kymograph Analysis.

Methods Mol Biol

August 2024

Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, China.

Time-lapse imaging of the subcellular localization and dynamic behavior of proteins is critical to understand their biological functions in cells. With the advent of various methodologies and computational tools, the precise tracking and quantification of protein spatiotemporal dynamics have become feasible. Kymograph analysis, in particular, has been extensively adopted for the quantitative assessment of proteins, vesicles, and organelle movements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!