Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Study Objectives: The demand for cost-effective and accessible alternatives to polysomnography (PSG), the conventional diagnostic method for obstructive sleep apnea (OSA), has surged. In this study, we have developed and validated a deep learning model for detecting apnea-hypopnea events using radar data.
Methods: We conducted a single-center prospective cohort study, dividing participants with suspected sleep-disordered breathing into development and temporally independent test sets. Utilizing a hybrid CNN-Transformer architecture, we performed fivefold cross-validation on the development set to develop and subsequently validate the model. Evaluation metrics included sensitivity for event detection, mean absolute error (MAE), intraclass correlation coefficient (ICC), and Pearson correlation coefficient (r) for apnea-hypopnea index (AHI) estimation. Linearly weighted kappa statistics (κ) assessed OSA severity.
Results: The development set comprised 54 participants (July 2021-May 2022), while the test set included 35 participants (June 2022-June 2023). In the test set, our model achieved an event detection sensitivity of 67.2% (95% CI = 65.8% to 68.5%) and demonstrated a MAE of 7.54 (95% CI = 5.36 to 9.72), indicating good agreement (ICC = 0.889 [95% CI = 0.792 to 0.942]) and a strong correlation (r = 0.892 [95% CI = 0.795 to 0.945]) with the ground truth for AHI estimation. Furthermore, OSA severity estimation showed substantial agreement (κ = 0.780 [95% CI = 0.658 to 0.903]).
Conclusions: Our study highlights radar sensors and advanced AI models' potential to improve OSA diagnosis, paving the path for future radar-based diagnostic models in sleep medicine research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/sleep/zsae184 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!