The aesthetic demand has become an imperative challenge to advance the practical and commercial application of daytime radiative cooling technology toward mitigating climate change. Meanwhile, the application of radiative cooling materials usually focuses on the building surface, related tightly to fire safety. Herein, the absorption and reflection spectra of organic and inorganic colorants are first compared in solar waveband, finding that iron oxides have higher reflectivity in NIR region. Second, three kinds of iron oxides-based colorants are selected to combine porous structure and silicon-modified ammonium polyphosphate (Si-APP) to engineer colored polyurethane-based (PU) coating, thus enhancing the reflectivity and flame retardancy. Together with reflectivity of more than 90% in near-infrared waveband and infrared emissivity of ≈91%, average temperature drops of ≈5.7, ≈7.9, and ≈3.8 °C are achieved in porous PU/FeO/Si-APP, porous PU/FeO·HO/Si-APP, and porous PU/FeO·HO/Si-APP, compared with dense control samples. The catalysis effect of iron oxides in the cross-linking reaction of pyrolysis products and dehydration mechanism of Si-APP enable PU coating to produce an intumescent and protective char residue. Consequently, PU composite coatings demonstrate desirable fire safety. The ingenious choice of colorants effectively minimizes the solar heating effect and trades off the daytime radiative cooling and aesthetic appearance requirement.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402349DOI Listing

Publication Analysis

Top Keywords

radiative cooling
16
solar waveband
8
daytime radiative
8
fire safety
8
iron oxides
8
porous pu/feo·ho/si-app
8
colored radiative
4
cooling
4
cooling flame-retardant
4
flame-retardant polyurethane-based
4

Similar Publications

Anisotropic nanocellulose-based aerogels for radiative cooling.

Int J Biol Macromol

January 2025

College of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China. Electronic address:

To this day, energy conservation, emission reduction, and environmental protection continue to be goals pursued by humanity. Passive radiation cooling, as a zero-consumption refrigeration technology, offers substantial opportunities for reducing global energy consumption and carbon dioxide emissions. It is of great significance to develop high-performance passive radiation cooling materials from sustainable materials.

View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

Mechanosensitive stacking structure with continuous solar controllability for real-time thermal management.

Mater Horiz

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.

Adaptive control of solar light based on an optical switching strategy is essential to tune thermal gain, while real-time solar regulation and hence on-demand thermal management coupled with dynamic conditions still faces a formidable challenge. Herein, we develop a stacking structure which is mechanosensitive and can be finely tuned depending on the dynamic cavitation effect. Specifically, the stacking structure transfers from a solid monolith state to porous layered state progressively under mechanical stretching, and the resulting porous layered state gradually goes back to the solid monolith state once the load is released.

View Article and Find Full Text PDF

Solar photovoltaic (PV) conversion has become a key area in today's energy supply. However, incomplete utilization of the PV cell bandgap results in the conversion of photon energy outside the bandgap into waste heat, reducing the overall efficiency. Improving spectral utilization efficiency and mitigating the effects of PV waste heat are top priorities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!