Since the 1970s, artificial intelligence (AI) has played an increasingly pivotal role in the medical field, enhancing the efficiency of disease diagnosis and treatment. Amidst an aging population and the proliferation of chronic disease, the prevalence of complex surgeries for high-risk multimorbid patients and hard-to-heal wounds has escalated. Healthcare professionals face the challenge of delivering safe and effective care to all patients concurrently. Inadequate management of skin wounds exacerbates the risk of infection and complications, which can obstruct the healing process and diminish patients' quality of life. AI shows substantial promise in revolutionizing wound care and management, thus enhancing the treatment of hospitalized patients and enabling healthcare workers to allocate their time more effectively. This review details the advancements in applying AI for skin wound assessment and the prediction of healing timelines. It emphasizes the use of diverse algorithms to automate and streamline the measurement, classification, and identification of chronic wound healing stages, and to predict wound healing times. Moreover, the review addresses existing limitations and explores future directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301465 | PMC |
http://dx.doi.org/10.62347/MYHE3488 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Implantable memristors are considered an emerging electronic technology that can simulate brain memory function and demonstrate some promising applications in the biomedical field. However, it remains a critical challenge to enhance their long-term stability and biocompatibility in implantation environments. In this work, an implantable memristor has been successfully fabricated based on TiO using magnetron sputtering.
View Article and Find Full Text PDFDiagn Interv Imaging
January 2025
Department of Neuroradiology, Hôpital Fondation Adolphe de Rothschild, 75019, Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France. Electronic address:
ISA Trans
December 2024
Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK. Electronic address:
As artificial intelligence advances and demand for cost-effective equipment maintenance in various fields increases, it is worth insightful research on utilizing robots embedded with sound source localization (SSL) technology for condition monitoring. Combining the two techniques has significant advantages, which are conducive to further classifying and tracking abnormal sources, thereby enhancing system performance at a lower cost. The paper provides an overview of current acoustic-based robotic techniques for condition monitoring, highlights the common SSL methods, and finds that localization performance heavily depends on signal quality.
View Article and Find Full Text PDFJ Gastrointest Surg
January 2025
Department of Gastroenterological Surgery. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!