Chronic psychological stress has been reported to decrease circulating iron concentrations and impair hematopoiesis. However, the underlying mechanisms remain unclear. This study aimed to investigate the effects of psychological stress on biological iron metabolism by using the social defeat stress (SDS) model, a widely used model of depression. Compared with control mice, mice subjected to SDS (SDS mice) had lower social interaction (SI) behavior. The SDS mice also showed impaired hematopoiesis, as evidenced by reduced circulating red blood cell counts, elevated reticulocyte counts, and decreased plasma iron levels. In the SDS mice, the iron contents in the bone marrow decreased, whereas those in the spleen increased, suggesting dysregulation in systemic iron metabolism. The concentrations of plasma hepcidin, an important regulator of systemic iron homeostasis, increased in the SDS mice. Meanwhile, the concentrations of ferroportin, an iron transport protein negatively regulated by hepcidin, were lower in the spleen and duodenum of the SDS mice than in those of the control mice. Treatment with dalteparin, a hepcidin inhibitor, prevented the decrease in plasma iron levels in the SDS mice. The gene expression and enzyme activity of furin, which converts the precursor hepcidin to active hepcidin, were high and positively correlated with plasma hepcidin concentration. Thus, furin activation might be responsible for the increased plasma hepcidin concentration. This study is the first to show that psychological stress disrupts systemic iron homeostasis by activating the hepcidin-ferroportin axis. Consideration of psychological stressors might be beneficial in the treatment of diseases with iron-refractory anemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301257 | PMC |
http://dx.doi.org/10.1096/fba.2024-00071 | DOI Listing |
Int J Mol Sci
December 2024
Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Risk Assessment Laboratory of Animal Product Quality Safety Feed Source Factors of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Peptidoglycan (PGN) is a unique component of prokaryotic cell walls with immune-enhancing capacities. Here, we extracted PGN from , a by-product of amino acid fermentation, using the trichloroacetic acid (TCA) method. SDS-PAGE analysis confirmed the presence of PGN, with a band of approximately 28 kDa.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Division of Pediatric Endocrinology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands.
Context: The growth hormone (GH) secretagogue receptor, encoded by GHSR, is expressed on somatotrophs of the pituitary gland. Stimulation with its ligand ghrelin, as well as its constitutive activity, enhances GH secretion. Studies in knock-out mice suggest that heterozygous loss-of-function of GHSR is associated with decreased GH response to fasting, but patient observations in small case reports have been equivocal.
View Article and Find Full Text PDFNat Commun
January 2025
Replicate Bioscience Inc, San Diego, CA, USA.
Self-replicating RNA (srRNA) technology, in comparison to mRNA vaccines, has shown dose-sparing by approximately 10-fold and more durable immune responses. However, no improvements are observed in the adverse events profile. Here, we develop an srRNA vaccine platform with optimized non-coding regions and demonstrate immunogenicity and safety in preclinical and clinical development.
View Article and Find Full Text PDFJ Biochem
January 2025
Graduate School of Engineering, Kogakuin University, Tokyo, Japan.
Sci Rep
January 2025
Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!