Reproducibility in chemistry research.

Heliyon

Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146, Palermo, Italy.

Published: July 2024

Chemistry is a reproducible science whose pillars - synthesis and analysis - actually comprise a huge collection of highly reproducible experimental methods to synthesize and analyze substances. The historical development of chemistry, furthermore, shows that reproducibility of methods has been the companion of novelty and creative innovation. The "publish or perish" principle dominating global academia since over two decades, however, intrinsically contributes to the publication of non-reproducible research outcomes also in chemistry. A study on reproducibility of chemistry research seems therefore timely, especially now that chemists are slowly but inevitably adopting open science and its tools such as the preprint, open access, and data sharing. We conclude presenting three simple guidelines for enhanced publication of research findings in chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305220PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e33658DOI Listing

Publication Analysis

Top Keywords

reproducibility chemistry
8
chemistry
5
chemistry chemistry
4
chemistry reproducible
4
reproducible science
4
science pillars
4
pillars synthesis
4
synthesis analysis
4
analysis comprise
4
comprise huge
4

Similar Publications

Manufacturing of Liposomes Using a Stainless-Steel Microfluidic Device: An Investigation into Design of Experiments.

Langmuir

January 2025

Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran.

Liposomes are highly beneficial nanocarrier systems due to their biocompatibility, low toxicity, and exceptional inclusiveness, which lead to improved drug bioavailability. For biological applications, accurate control over these nanoparticles' mean size and size distribution is essential. Micromixers facilitate the continuous production of liposomes, enhancing the precision of size regulation and reproducibility.

View Article and Find Full Text PDF

Understanding the dynamic pathophysiology of diseases in the lung, such as asthma and chronic asthma, chronic obstructive pulmonary disease, and lung cancer, is crucial for the treatment, analysis, and outcome of these diseases. Unlike other traditional models, we suggest a protocol that is sustainable and reproducible and offers different analysis methods while maintaining in vivo lung architecture and immune dynamics. This protocol allows one to study the pathophysiological changes, including changes to the immune cells, cytokines, and mediators, in 30 precision-cut lung slices from a single murine lung.

View Article and Find Full Text PDF

Background: Stool consistency is an important outcome measure to evaluate in the investigation of several gastrointestinal diseases. The Bristol Stool Scale (BSS) is one of the most commonly used tools for evaluation of stool consistency. BSS ranges from 1-7 and each score is assigned to a given consistency of the feces.

View Article and Find Full Text PDF

The valid method was developed for analyzing empagliflozin in serum/plasma/urine using a molecularly imprinted ghost polymer-solid-phase extraction approach (MISPE) with liquid chromatographic methodology. Methacrylic acid (MAA) was used as the monomer, 2,2 azobis isobutyronitrile as the initiator and ethylene glycol dimethacrylate as the cross-linker in the free radical polymerization procedure. Empagliflozin was loaded onto the polymer and eluted with 1 mL of a 9:1 MeOH:acetic acid solution.

View Article and Find Full Text PDF

Studying Alzheimer's disease through an integrative serum metabolomic and lipoproteomic approach.

J Transl Med

January 2025

Center for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, 06129, Italy.

Background: Alzheimer's disease (AD) is the most frequent neurodegenerative disorder worldwide. The great variability in disease evolution and the incomplete understanding of the molecular mechanisms underlying AD make it difficult to predict when a patient will convert from prodromal stage to dementia. We hypothesize that metabolic alterations present at the level of the brain could be reflected at a systemic level in blood serum of patients, and that these alterations could be used as prognostic biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!