Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae: Current status and future prospects.

Mater Today Bio

Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China.

Published: August 2024

AI Article Synopsis

  • Cyanobacteria are special tiny organisms that can make their own food using sunlight and are important for producing oxygen on Earth.
  • They also create useful chemicals that could help make medicines.
  • The review talks about how we can use these organisms in medical treatments now and in the future, like helping wounds heal and delivering drugs to sick people.

Article Abstract

Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis on Earth. Besides their traditional roles serving as primary producers, cyanobacteria also synthesize abundant secondary metabolites including carotenoids, alkaloids, peptides, which have been reported to possess medicinal potentials. More importantly, the advancement of synthetic biology technology has further expanded their potential biomedical applications especially using living/engineered cyanobacteria, providing promising and attractive strategies for future disease treatments. To improve the understanding and to facilitate future applications, this review aims to discuss the current status and future prospects of cyanobacterial-based biomedical engineering. Firstly, specific properties of cyanobacteria related with biomedical applications like their natural products of bioactive compounds and heavy metal adsorption were concluded. Subsequently, based on these properties of cyanobacteria, we discussed the progress of their applications in various disease models like hypoxia microenvironment alleviation, wound healing, drug delivery, and so on. Finally, the future prospects including further exploration of cyanobacteria secondary metabolites, the integration of bioactive compounds synthesized by cyanobacteria with medical diagnosis and treatment, and the optimization of application were critically presented. The review will promote the studies related with cyanobacteria-based biomedical engineering and its practical application in clinical trials in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304071PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101154DOI Listing

Publication Analysis

Top Keywords

biomedical engineering
12
future prospects
12
cyanobacteria
8
current status
8
status future
8
secondary metabolites
8
biomedical applications
8
properties cyanobacteria
8
bioactive compounds
8
future
6

Similar Publications

Purpose: Treatment of peripheral artery disease (PAD) in the region below the knee (BTK) is dissatisfying as failure of treated target lesions (TLF) is frequent and diagnostic imaging is often challenging. In the BTK-region metallic drug-eluting stents (mDES) yielded best results concerning primary patency (PP), but also annihilate signal in magnetic resonance angiography (MR-A). A recently introduced non-metallic drug eluting bioresorbable Tyrocore® vascular scaffold (deBVS), that offers an option for re-treatment of lesions due to its full degradation within 3-4 years after placement, was investigated with respect to its compatibility with MR-A to unimpededly depict previously treated target lesions.

View Article and Find Full Text PDF

Introduction: Continuing Health Education is a strategy that integrates learning into the work process to transform health practices. Primary health care has proved to be a powerful space for consolidating continuing education, as it promotes reflection and learning based on the local singularities of the territory. Continuing health education is an important strategy for transforming the reality of Primary health care, reinventing work, and consequently changing practices.

View Article and Find Full Text PDF

Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.

View Article and Find Full Text PDF

Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains.

View Article and Find Full Text PDF

Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!