Distorted urea levels indicate several liver, kidney, or metabolic diseases; however, traditional clinical urea detection relies on urease-based methods enslaved to well-known limitations of high-price, unstable properties, complicated sample pretreatment and analysis procedures, and difficult visual real-time monitoring. Herein, nonenzymatic paper-based fluorescent materials (UFP-BP) are strategically integrated with an on-demand fluorescent-sensor (UFP) self-aggregated nanoparticle on commercial filter paper for pre-dilution-free and visual real-time urea monitoring. The UFP is synthesized and self-aggregated into the fluorescent nanoparticles for selective urea recognition. Then, the nanoparticles are interstitially loaded on filter paper to nanoengineer the UFP-BP, achieving selective quantitative urea detection in the normal concentration range (10-1000 mm). UFP and UFP-BP can successfully monitor urea levels in real rat urine, artificial simulants, and milk. The proposed sensing platform, integrated with smartphones, offers accurate, quantitative, nonenzymatic, noninvasive, pre-dilution-free, on-site, rapid, low-cost, easy-to-operate, real-time visual urea detection in food samples and human body fluids. The designed sensing system can provide early warnings of abnormal nitrogen-based health issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202402009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!