CADD Methods for Developing Novel Compounds Synthesized to Inhibit Tyrosine Kinase Receptors.

Curr Top Med Chem

Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco.

Published: August 2024

Growth factors and their receptor tyrosine kinases play a central role in regulating vital cellular processes such as proliferation, differentiation, division, and cell survival, and they are closely associated with the development of various types of cancer, particularly in the context of angiogenesis. Although several small chemical compounds targeting tyrosine kinase receptors have been approved by the FDA for cancer treatment by inhibiting angiogenesis, there is still a need for more effective medications. in silico studies are now crucial tools for the design of new drugs, offering considerable advantages such as cost and time reduction. In this review, we examined recent in silico research carried out between 2022 and 2024, focusing on new drug candidates synthesized to fight cancer, in particular by targeting tyrosine kinase receptors involved in the process of angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115680266312422240712053821DOI Listing

Publication Analysis

Top Keywords

tyrosine kinase
12
kinase receptors
12
targeting tyrosine
8
cadd methods
4
methods developing
4
developing novel
4
novel compounds
4
compounds synthesized
4
synthesized inhibit
4
tyrosine
4

Similar Publications

Kinase-related gene fusion and point mutations play pivotal roles as drivers in cancer, necessitating optimized, targeted therapy against these alterations. The efficacy of molecularly targeted therapeutics varies depending on the specific alteration, with great success reported for such therapeutics in the treatment of cancer with kinase fusion proteins. However, the involvement of actionable alterations in solid tumors, especially regarding kinase fusions, remains unclear.

View Article and Find Full Text PDF

It was previously shown that the original dipeptide mimetic of the 4th loop of neurotrophin-3 (NT-3) hexamethylenediamide bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) (GTS-301), like the full-length neurotrophin, predominantly activates the tyrosine kinase receptor TrkC and has a neuroprotective effect in vitro at concentrations of 10-10 M, as well as antidiabetic (0.1 and 0.5 mg/kg) and antidepressant (5 and 10 mg/kg) effects after systemic administration in rodents.

View Article and Find Full Text PDF

Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A).

View Article and Find Full Text PDF

Uncommon atypical mutations account for 10-15% of all epidermal growth factor receptor (EGFR) activating mutations in nonsmall-cell lung cancer (NSCLC). Tumors harboring rare EGFR mutations show highly heterogeneous responses to EGFR tyrosine kinase inhibitors (TKIs). There is insufficient clinical evidence for uncommon types of EGFR mutations, especially those with compound EGFR mutations.

View Article and Find Full Text PDF

Diabetes mellitus can cause impaired and delayed wound healing, leading to lower extremity amputations; however, the mechanisms underlying the regulation of vascular endothelial growth factor-dependent (VEGF-dependent) angiogenesis remain unclear. In our study, the molecular underpinnings of endothelial dysfunction in diabetes are investigated, focusing on the roles of disabled-2 (Dab2) and Forkhead box M1 (FOXM1) in VEGF receptor 2 (VEGFR2) signaling and endothelial cell function. Bulk RNA-sequencing analysis identified significant downregulation of Dab2 in high-glucose-treated primary mouse skin endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!